메뉴 건너뛰기




Volumn 2, Issue 4, 2018, Pages 642-697

High-Performance Piezoelectric Energy Harvesters and Their Applications

Author keywords

batteryless; energy conversion; energy harvesting; piezoelectric; power generation; self powered; smart materials; vibration; wireless sensor

Indexed keywords

BANDWIDTH; ELECTRIC POWER SYSTEMS; ENERGY CONVERSION EFFICIENCY; MINIATURE INSTRUMENTS; MONITORING; PIEZOELECTRICITY; WEARABLE SENSORS; WIRELESS SENSOR NETWORKS;

EID: 85045085172     PISSN: None     EISSN: 25424351     Source Type: Journal    
DOI: 10.1016/j.joule.2018.03.011     Document Type: Review
Times cited : (927)

References (308)
  • 1
    • 84890528611 scopus 로고    scopus 로고
    • Piezoelectric and ferroelectric materials and structures for energy harvesting applications
    • Bowen, C., Kim, H., Weaver, P., Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7 (2014), 25–44.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 25-44
    • Bowen, C.1    Kim, H.2    Weaver, P.3    Dunn, S.4
  • 2
    • 84964596782 scopus 로고    scopus 로고
    • Piezoelectric thin films: an integrated review of transducers and energy harvesting
    • Khan, A., Abas, Z., Kim, H.S., Oh, I.-K., Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct., 25, 2016, 053002.
    • (2016) Smart Mater. Struct. , vol.25 , pp. 053002
    • Khan, A.1    Abas, Z.2    Kim, H.S.3    Oh, I.-K.4
  • 3
    • 84894283149 scopus 로고    scopus 로고
    • A review of piezoelectric polymers as functional materials for electromechanical transducers
    • Ramadan, K.S., Sameoto, D., Evoy, S., A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct., 23, 2014, 033001.
    • (2014) Smart Mater. Struct. , vol.23 , pp. 033001
    • Ramadan, K.S.1    Sameoto, D.2    Evoy, S.3
  • 4
    • 84866335762 scopus 로고    scopus 로고
    • From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures
    • Wang, Z.L., From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures. MRS Bull. 37 (2012), 814–827.
    • (2012) MRS Bull. , vol.37 , pp. 814-827
    • Wang, Z.L.1
  • 5
    • 84872464321 scopus 로고    scopus 로고
    • Progress in nanogenerators for portable electronics
    • Wang, Z.L., Zhu, G., Yang, Y., Wang, S., Pan, C., Progress in nanogenerators for portable electronics. Mater. Today 15 (2012), 532–543.
    • (2012) Mater. Today , vol.15 , pp. 532-543
    • Wang, Z.L.1    Zhu, G.2    Yang, Y.3    Wang, S.4    Pan, C.5
  • 6
    • 56449115420 scopus 로고    scopus 로고
    • Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
    • Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct., 17, 2008, 043001.
    • (2008) Smart Mater. Struct. , vol.17 , pp. 043001
    • Cook-Chennault, K.A.1    Thambi, N.2    Sastry, A.M.3
  • 7
    • 84942311492 scopus 로고    scopus 로고
    • Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters
    • Briscoe, J., Dunn, S., Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano Energy 14 (2015), 15–29.
    • (2015) Nano Energy , vol.14 , pp. 15-29
    • Briscoe, J.1    Dunn, S.2
  • 8
    • 84869075298 scopus 로고    scopus 로고
    • Piezoelectric MEMS for energy harvesting
    • Kim, S.-G., Priya, S., Kanno, I., Piezoelectric MEMS for energy harvesting. MRS Bull. 37 (2012), 1039–1050.
    • (2012) MRS Bull. , vol.37 , pp. 1039-1050
    • Kim, S.-G.1    Priya, S.2    Kanno, I.3
  • 9
    • 84869407386 scopus 로고    scopus 로고
    • Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems
    • Wang, Z.L., Wu, W., Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51 (2012), 11700–11721.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 11700-11721
    • Wang, Z.L.1    Wu, W.2
  • 10
    • 84870435444 scopus 로고    scopus 로고
    • Energy harvesting: an integrated view of materials, devices and applications
    • Radousky, H.B., Liang, H., Energy harvesting: an integrated view of materials, devices and applications. Nanotechnology, 23, 2012, 502001.
    • (2012) Nanotechnology , vol.23 , pp. 502001
    • Radousky, H.B.1    Liang, H.2
  • 11
    • 84953792301 scopus 로고    scopus 로고
    • Flexible nanogenerators for energy harvesting and self-powered electronics
    • Fan, F.R., Tang, W., Wang, Z.L., Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28 (2016), 4283–4305.
    • (2016) Adv. Mater. , vol.28 , pp. 4283-4305
    • Fan, F.R.1    Tang, W.2    Wang, Z.L.3
  • 12
    • 84899825755 scopus 로고    scopus 로고
    • On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion
    • Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D., On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev., 66, 2014, 040801.
    • (2014) Appl. Mech. Rev. , vol.66 , pp. 040801
    • Daqaq, M.F.1    Masana, R.2    Erturk, A.3    Quinn, D.D.4
  • 13
    • 84873344256 scopus 로고    scopus 로고
    • A review of the recent research on vibration energy harvesting via bistable systems
    • Harne, R.L., Wang, K.W., A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct., 22, 2013, 023001.
    • (2013) Smart Mater. Struct. , vol.22 , pp. 023001
    • Harne, R.L.1    Wang, K.W.2
  • 14
    • 78650924737 scopus 로고    scopus 로고
    • Toward broadband vibration-based energy harvesting
    • Tang, L., Yang, Y., Soh, C.K., Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21 (2010), 1867–1897.
    • (2010) J. Intell. Mater. Syst. Struct. , vol.21 , pp. 1867-1897
    • Tang, L.1    Yang, Y.2    Soh, C.K.3
  • 15
    • 84859586936 scopus 로고    scopus 로고
    • Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation
    • Guyomar, D., Lallart, M., Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2 (2011), 274–294.
    • (2011) Micromachines , vol.2 , pp. 274-294
    • Guyomar, D.1    Lallart, M.2
  • 16
    • 84862128298 scopus 로고    scopus 로고
    • Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications
    • Dicken, J., Mitcheson, P.D., Stoianov, I., Yeatman, E.M., Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans. Power Electron. 27 (2012), 4514–4529.
    • (2012) IEEE Trans. Power Electron. , vol.27 , pp. 4514-4529
    • Dicken, J.1    Mitcheson, P.D.2    Stoianov, I.3    Yeatman, E.M.4
  • 17
    • 84855645427 scopus 로고    scopus 로고
    • Review of power conditioning for kinetic energy harvesting systems
    • Szarka, G.D., Stark, B.H., Burrow, S.G., Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27 (2012), 803–815.
    • (2012) IEEE Trans. Power Electron. , vol.27 , pp. 803-815
    • Szarka, G.D.1    Stark, B.H.2    Burrow, S.G.3
  • 18
    • 85021116625 scopus 로고    scopus 로고
    • Energy harvesting from the animal/human body for self-powered electronics
    • Dagdeviren, C., Li, Z., Wang, Z.L., Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 19 (2017), 85–108.
    • (2017) Annu. Rev. Biomed. Eng. , vol.19 , pp. 85-108
    • Dagdeviren, C.1    Li, Z.2    Wang, Z.L.3
  • 19
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9):.
    • Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., and Green, T.C. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9): p. 1457–1486.
    • (2008) , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, A.S.4    Green, T.C.5
  • 20
    • 84945206361 scopus 로고    scopus 로고
    • A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms
    • Siddique, A.R.M., Mahmud, S., Van Heyst, B., A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energ. Convers. Manag. 106 (2015), 728–747.
    • (2015) Energ. Convers. Manag. , vol.106 , pp. 728-747
    • Siddique, A.R.M.1    Mahmud, S.2    Van Heyst, B.3
  • 21
    • 44649151668 scopus 로고    scopus 로고
    • Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion
    • Hudak, N.S., Amatucci, G.G., Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Physiol., 103, 2008, 5.
    • (2008) J. Appl. Physiol. , vol.103 , pp. 5
    • Hudak, N.S.1    Amatucci, G.G.2
  • 22
    • 84885124731 scopus 로고    scopus 로고
    • Review on electrodynamic energy harvesters—a classification approach
    • Cepnik, C., Lausecker, R., Wallrabe, U., Review on electrodynamic energy harvesters—a classification approach. Micromachines 4 (2013), 168–196.
    • (2013) Micromachines , vol.4 , pp. 168-196
    • Cepnik, C.1    Lausecker, R.2    Wallrabe, U.3
  • 23
    • 84954175944 scopus 로고    scopus 로고
    • Micro-scale energy harvesting devices: review of methodological performances in the last decade
    • Selvan, K.V., Ali, M.S.M., Micro-scale energy harvesting devices: review of methodological performances in the last decade. Renew. Sustain. Energ. Rev. 54 (2016), 1035–1047.
    • (2016) Renew. Sustain. Energ. Rev. , vol.54 , pp. 1035-1047
    • Selvan, K.V.1    Ali, M.S.M.2
  • 24
    • 84948437290 scopus 로고    scopus 로고
    • Energy harvesting in wireless sensor networks: a comprehensive review
    • Shaikh, F.K., Zeadally, S., Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energ. Rev. 55 (2016), 1041–1054.
    • (2016) Renew. Sustain. Energ. Rev. , vol.55 , pp. 1041-1054
    • Shaikh, F.K.1    Zeadally, S.2
  • 26
    • 84903106739 scopus 로고    scopus 로고
    • The development of piezoelectric materials and the new perspective
    • K. Uchino Woodhead Publishing
    • Uchino, K., The development of piezoelectric materials and the new perspective. Uchino, K., (eds.) Advanced Piezoelectric Materials, 2010, Woodhead Publishing, 1–43.
    • (2010) Advanced Piezoelectric Materials , pp. 1-43
    • Uchino, K.1
  • 28
    • 84973644322 scopus 로고    scopus 로고
    • Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting
    • Yang, Z., Zu, J., Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energ. Convers. Manag. 122 (2016), 321–329.
    • (2016) Energ. Convers. Manag. , vol.122 , pp. 321-329
    • Yang, Z.1    Zu, J.2
  • 29
    • 0004010529 scopus 로고
    • Ferroelectric Materials and Their Applications
    • North-Holland
    • Yuhuan, X., Ferroelectric Materials and Their Applications. 1991, North-Holland.
    • (1991)
    • Yuhuan, X.1
  • 31
    • 85013176797 scopus 로고    scopus 로고
    • A comprehensive review on vibration energy harvesting: Modelling and realization
    • Wei, C., Jing, X., A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energ. Rev. 74 (2017), 1–18.
    • (2017) Renew. Sustain. Energ. Rev. , vol.74 , pp. 1-18
    • Wei, C.1    Jing, X.2
  • 34
    • 67649482443 scopus 로고    scopus 로고
    • A piezomagnetoelastic structure for broadband vibration energy harvesting
    • Erturk, A., Hoffmann, J., Inman, D.J., A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett., 94, 2009, 254102.
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 254102
    • Erturk, A.1    Hoffmann, J.2    Inman, D.J.3
  • 35
    • 84877278091 scopus 로고    scopus 로고
    • Enhanced broadband piezoelectric energy harvesting using rotatable magnets
    • Zhou, S., Cao, J., Erturk, A., Lin, J., Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett., 102, 2013, 173901.
    • (2013) Appl. Phys. Lett. , vol.102 , pp. 173901
    • Zhou, S.1    Cao, J.2    Erturk, A.3    Lin, J.4
  • 36
    • 77649273332 scopus 로고    scopus 로고
    • Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator
    • Stanton, S.C., McGehee, C.C., Mann, B.P., Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. Nonlinear Phenom. 239 (2010), 640–653.
    • (2010) Phys. Nonlinear Phenom. , vol.239 , pp. 640-653
    • Stanton, S.C.1    McGehee, C.C.2    Mann, B.P.3
  • 37
    • 80053506652 scopus 로고    scopus 로고
    • Experimental Duffing oscillator for broadband piezoelectric energy harvesting
    • Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B., Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct., 20, 2011, 102001.
    • (2011) Smart Mater. Struct. , vol.20 , pp. 102001
    • Sebald, G.1    Kuwano, H.2    Guyomar, D.3    Ducharne, B.4
  • 38
    • 84865848454 scopus 로고    scopus 로고
    • A nonlinear piezoelectric energy harvester with magnetic oscillator
    • Tang, L., Yang, Y., A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett., 101, 2012, 094102.
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 094102
    • Tang, L.1    Yang, Y.2
  • 39
    • 84907798524 scopus 로고    scopus 로고
    • High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism
    • Yang, Z., Zu, J., High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energ. Convers. Manag. 88 (2014), 829–833.
    • (2014) Energ. Convers. Manag. , vol.88 , pp. 829-833
    • Yang, Z.1    Zu, J.2
  • 40
    • 84921803798 scopus 로고    scopus 로고
    • Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations
    • Yang, Z., Zhu, Y., Zu, J., Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Mater. Struct., 24, 2015, 025028.
    • (2015) Smart Mater. Struct. , vol.24 , pp. 025028
    • Yang, Z.1    Zhu, Y.2    Zu, J.3
  • 41
    • 70350738294 scopus 로고    scopus 로고
    • Reversible hysteresis for broadband magnetopiezoelastic energy harvesting
    • Stanton, S.C., McGehee, C.C., Mann, B.P., Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett., 95, 2009, 174103.
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 174103
    • Stanton, S.C.1    McGehee, C.C.2    Mann, B.P.3
  • 42
    • 84978664423 scopus 로고    scopus 로고
    • Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits
    • Yang, Z., Zu, J., Xu, Z., Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits. IEEE/ASME Trans. Mechatronics 21 (2016), 2174–2184.
    • (2016) IEEE/ASME Trans. Mechatronics , vol.21 , pp. 2174-2184
    • Yang, Z.1    Zu, J.2    Xu, Z.3
  • 43
    • 79952438592 scopus 로고    scopus 로고
    • Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling
    • Erturk, A., Inman, D., Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330 (2011), 2339–2353.
    • (2011) J. Sound Vib. , vol.330 , pp. 2339-2353
    • Erturk, A.1    Inman, D.2
  • 44
    • 84905638500 scopus 로고    scopus 로고
    • Broadband tristable energy harvester: modeling and experiment verification
    • Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z., Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133 (2014), 33–39.
    • (2014) Appl. Energy , vol.133 , pp. 33-39
    • Zhou, S.1    Cao, J.2    Inman, D.J.3    Lin, J.4    Liu, S.5    Wang, Z.6
  • 45
    • 84907494517 scopus 로고    scopus 로고
    • Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting
    • Zhou, S., Cao, J., Lin, J., Wang, Z., Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys., 67, 2014, 10.1051/epjap/2014140190.
    • (2014) Eur. Phys. J. Appl. Phys. , vol.67
    • Zhou, S.1    Cao, J.2    Lin, J.3    Wang, Z.4
  • 46
    • 84907524132 scopus 로고    scopus 로고
    • A multi-stable energy harvester: dynamic modeling and bifurcation analysis
    • Kim, P., Seok, J., A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333 (2014), 5525–5547.
    • (2014) J. Sound Vib. , vol.333 , pp. 5525-5547
    • Kim, P.1    Seok, J.2
  • 47
    • 84940211917 scopus 로고    scopus 로고
    • Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester
    • Kim, P., Seok, J., Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theor. 94 (2015), 41–63.
    • (2015) Mech. Mach. Theor. , vol.94 , pp. 41-63
    • Kim, P.1    Seok, J.2
  • 48
    • 84982854536 scopus 로고    scopus 로고
    • Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters
    • Zhou, S., Cao, J., Lin, J., Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86 (2016), 1599–1611.
    • (2016) Nonlinear Dyn. , vol.86 , pp. 1599-1611
    • Zhou, S.1    Cao, J.2    Lin, J.3
  • 49
    • 84860354823 scopus 로고    scopus 로고
    • Harmonic balance analysis of the bistable piezoelectric inertial generator
    • Stanton, S.C., Owens, B.A., Mann, B.P., Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331 (2012), 3617–3627.
    • (2012) J. Sound Vib. , vol.331 , pp. 3617-3627
    • Stanton, S.C.1    Owens, B.A.2    Mann, B.P.3
  • 50
    • 84887829085 scopus 로고    scopus 로고
    • On the fundamental and superharmonic effects in bistable energy harvesting
    • Harne, R., Wang, K., On the fundamental and superharmonic effects in bistable energy harvesting. J. Intell. Mater. Syst. Struct. 25 (2014), 937–950.
    • (2014) J. Intell. Mater. Syst. Struct. , vol.25 , pp. 937-950
    • Harne, R.1    Wang, K.2
  • 51
    • 84857891328 scopus 로고    scopus 로고
    • Energy harvesting in the super-harmonic frequency region of a twin-well oscillator
    • Masana, R., Daqaq, M., Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Physiol., 111, 2012, 044501.
    • (2012) J. Appl. Physiol. , vol.111 , pp. 044501
    • Masana, R.1    Daqaq, M.2
  • 52
    • 84979468143 scopus 로고    scopus 로고
    • Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement
    • Zhou, S., Cao, J., Inman, D.J., Lin, J., Li, D., Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373 (2016), 223–235.
    • (2016) J. Sound Vib. , vol.373 , pp. 223-235
    • Zhou, S.1    Cao, J.2    Inman, D.J.3    Lin, J.4    Li, D.5
  • 53
    • 84992724029 scopus 로고    scopus 로고
    • Characterizing the effective bandwidth of tri-stable energy harvesters
    • Panyam, M., Daqaq, M.F., Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 386 (2017), 336–358.
    • (2017) J. Sound Vib. , vol.386 , pp. 336-358
    • Panyam, M.1    Daqaq, M.F.2
  • 54
    • 84929522706 scopus 로고    scopus 로고
    • Chaos in the fractionally damped broadband piezoelectric energy generator
    • Cao, J., Zhou, S., Inman, D.J., Chen, Y., Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80 (2015), 1705–1719.
    • (2015) Nonlinear Dyn. , vol.80 , pp. 1705-1719
    • Cao, J.1    Zhou, S.2    Inman, D.J.3    Chen, Y.4
  • 55
    • 84856464361 scopus 로고    scopus 로고
    • Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments
    • Stanton, S.C., Mann, B.P., Owens, B.A., Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments. Phys. Nonlinear Phenom. 241 (2012), 711–720.
    • (2012) Phys. Nonlinear Phenom. , vol.241 , pp. 711-720
    • Stanton, S.C.1    Mann, B.P.2    Owens, B.A.3
  • 56
    • 84923684223 scopus 로고    scopus 로고
    • Analysis of tristable energy harvesting system having fractional order viscoelastic material
    • Oumbé Tékam, G., Kitio Kwuimy, C., Woafo, P., Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos, 25, 2015, 013112.
    • (2015) Chaos , vol.25 , pp. 013112
    • Oumbé Tékam, G.1    Kitio Kwuimy, C.2    Woafo, P.3
  • 57
    • 77955194635 scopus 로고    scopus 로고
    • Magnetopiezoelastic energy harvesting driven by random excitations
    • Litak, G., Friswell, M., Adhikari, S., Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett., 96, 2010, 214103.
    • (2010) Appl. Phys. Lett. , vol.96 , pp. 214103
    • Litak, G.1    Friswell, M.2    Adhikari, S.3
  • 58
    • 79960986831 scopus 로고    scopus 로고
    • Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions
    • Litak, G., Borowiec, M., Friswell, M.I., Adhikari, S., Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions. J. Theor. Appl. Mech. 49 (2011), 757–764.
    • (2011) J. Theor. Appl. Mech. , vol.49 , pp. 757-764
    • Litak, G.1    Borowiec, M.2    Friswell, M.I.3    Adhikari, S.4
  • 60
    • 79952539208 scopus 로고    scopus 로고
    • Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise
    • Daqaq, M.F., Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330 (2011), 2554–2564.
    • (2011) J. Sound Vib. , vol.330 , pp. 2554-2564
    • Daqaq, M.F.1
  • 61
    • 84899586580 scopus 로고    scopus 로고
    • Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise
    • He, Q., Daqaq, M.F., Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vib. 333 (2014), 3479–3489.
    • (2014) J. Sound Vib. , vol.333 , pp. 3479-3489
    • He, Q.1    Daqaq, M.F.2
  • 62
    • 84875139208 scopus 로고    scopus 로고
    • On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system
    • Zhao, S., Erturk, A., On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett., 102, 2013, 103902.
    • (2013) Appl. Phys. Lett. , vol.102 , pp. 103902
    • Zhao, S.1    Erturk, A.2
  • 64
    • 84893628406 scopus 로고    scopus 로고
    • Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester
    • Su, W.-J., Zu, J., Zhu, Y., Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 25 (2013), 430–442.
    • (2013) J. Intell. Mater. Syst. Struct. , vol.25 , pp. 430-442
    • Su, W.-J.1    Zu, J.2    Zhu, Y.3
  • 65
    • 84906213994 scopus 로고    scopus 로고
    • Design and development of a novel bi-directional piezoelectric energy harvester
    • Su, W.-J., Zu, J.W., Design and development of a novel bi-directional piezoelectric energy harvester. Smart Mater. Struct., 23, 2014, 095012.
    • (2014) Smart Mater. Struct. , vol.23 , pp. 095012
    • Su, W.-J.1    Zu, J.W.2
  • 66
    • 77956572872 scopus 로고    scopus 로고
    • A piezoelectric bistable plate for nonlinear broadband energy harvesting
    • Arrieta, A., Hagedorn, P., Erturk, A., Inman, D., A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett., 97, 2010, 104102.
    • (2010) Appl. Phys. Lett. , vol.97 , pp. 104102
    • Arrieta, A.1    Hagedorn, P.2    Erturk, A.3    Inman, D.4
  • 67
    • 84926255337 scopus 로고    scopus 로고
    • M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation
    • Leadenham, S., Erturk, A., M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. J. Sound Vib. 333 (2014), 6209–6223.
    • (2014) J. Sound Vib. , vol.333 , pp. 6209-6223
    • Leadenham, S.1    Erturk, A.2
  • 68
    • 70349218879 scopus 로고    scopus 로고
    • Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures
    • Arrieta, A., Neild, S., Wagg, D., Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn. 58 (2009), 259–272.
    • (2009) Nonlinear Dyn. , vol.58 , pp. 259-272
    • Arrieta, A.1    Neild, S.2    Wagg, D.3
  • 69
    • 84859952487 scopus 로고    scopus 로고
    • Optimal configurations of bistable piezo-composites for energy harvesting
    • Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D., Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett., 100, 2012, 114104.
    • (2012) Appl. Phys. Lett. , vol.100 , pp. 114104
    • Betts, D.N.1    Kim, H.A.2    Bowen, C.R.3    Inman, D.4
  • 70
    • 84884551264 scopus 로고    scopus 로고
    • Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application
    • Betts, D.N., Bowen, C.R., Kim, H.A., Gathercole, N., Clarke, C.T., Inman, D.J., Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. Eur. Phys. J. Spec. Top. 222 (2013), 1553–1562.
    • (2013) Eur. Phys. J. Spec. Top. , vol.222 , pp. 1553-1562
    • Betts, D.N.1    Bowen, C.R.2    Kim, H.A.3    Gathercole, N.4    Clarke, C.T.5    Inman, D.J.6
  • 71
    • 84924053446 scopus 로고    scopus 로고
    • Impact-induced high-energy orbits of nonlinear energy harvesters
    • Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J., Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett., 106, 2015, 093901.
    • (2015) Appl. Phys. Lett. , vol.106 , pp. 093901
    • Zhou, S.1    Cao, J.2    Inman, D.J.3    Liu, S.4    Wang, W.5    Lin, J.6
  • 72
    • 84994591094 scopus 로고    scopus 로고
    • Surfing the high energy output branch of nonlinear energy harvesters
    • Mallick, D., Amann, A., Roy, S., Surfing the high energy output branch of nonlinear energy harvesters. Phys. Rev. Lett., 117, 2016, 197701.
    • (2016) Phys. Rev. Lett. , vol.117 , pp. 197701
    • Mallick, D.1    Amann, A.2    Roy, S.3
  • 73
    • 85023775914 scopus 로고    scopus 로고
    • Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations
    • Lan, C., Tang, L., Qin, W., Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. Eur. Phys. J. Appl. Phys., 79, 2017, 20902.
    • (2017) Eur. Phys. J. Appl. Phys. , vol.79 , pp. 20902
    • Lan, C.1    Tang, L.2    Qin, W.3
  • 74
    • 85044009070 scopus 로고    scopus 로고
    • Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters
    • Haji Hosseinloo, A., Slotine, J.-J., Turitsyn, K., Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters. J. Vib. Control, 2017, 10.1177/1077546316688992.
    • (2017) J. Vib. Control
    • Haji Hosseinloo, A.1    Slotine, J.-J.2    Turitsyn, K.3
  • 76
    • 85166852485 scopus 로고    scopus 로고
    • Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. in Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA).
    • Baker, J., Roundy, S., and Wright, P. (2005). Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. in Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA).
    • (2005)
    • Baker, J.1    Roundy, S.2    Wright, P.3
  • 77
    • 77953148023 scopus 로고    scopus 로고
    • Beam shape optimization for power harvesting
    • Dietl, J.M., Garcia, E., Beam shape optimization for power harvesting. J. Intell. Mater. Syst. Struct. 21 (2010), 633–646.
    • (2010) J. Intell. Mater. Syst. Struct. , vol.21 , pp. 633-646
    • Dietl, J.M.1    Garcia, E.2
  • 78
    • 58149344956 scopus 로고    scopus 로고
    • Characterization of different beam shapes for piezoelectric energy harvesting
    • Goldschmidtboeing, F., Woias, P., Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng., 18, 2008, 104013.
    • (2008) J. Micromech. Microeng. , vol.18 , pp. 104013
    • Goldschmidtboeing, F.1    Woias, P.2
  • 79
  • 80
    • 84862924167 scopus 로고    scopus 로고
    • Design optimization of piezoelectric energy harvester subject to tip excitation
    • Park, J., Lee, S., Kwak, B.M., Design optimization of piezoelectric energy harvester subject to tip excitation. J. Mech. Sci. Technol. 26 (2012), 137–143.
    • (2012) J. Mech. Sci. Technol. , vol.26 , pp. 137-143
    • Park, J.1    Lee, S.2    Kwak, B.M.3
  • 81
    • 78649237429 scopus 로고    scopus 로고
    • Improving the performance of a piezoelectric energy harvester using a variable thickness beam
    • Paquin, S., St-Amant, Y., Improving the performance of a piezoelectric energy harvester using a variable thickness beam. Smart Mater. Struct., 19, 2010, 105020.
    • (2010) Smart Mater. Struct. , vol.19 , pp. 105020
    • Paquin, S.1    St-Amant, Y.2
  • 82
    • 70350413725 scopus 로고    scopus 로고
    • Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells
    • Rupp, C.J., Evgrafov, A., Maute, K., Dunn, M.L., Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J. Intell. Mater. Syst. Struct. 20 (2009), 1923–1939.
    • (2009) J. Intell. Mater. Syst. Struct. , vol.20 , pp. 1923-1939
    • Rupp, C.J.1    Evgrafov, A.2    Maute, K.3    Dunn, M.L.4
  • 83
    • 77954757726 scopus 로고    scopus 로고
    • A level set approach for optimal design of smart energy harvesters
    • Chen, S., Gonella, S., Chen, W., Liu, W.K., A level set approach for optimal design of smart energy harvesters. Comput. Methods Appl. Mech. Eng. 199 (2010), 2532–2543.
    • (2010) Comput. Methods Appl. Mech. Eng. , vol.199 , pp. 2532-2543
    • Chen, S.1    Gonella, S.2    Chen, W.3    Liu, W.K.4
  • 85
    • 84879687429 scopus 로고    scopus 로고
    • Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints
    • Wein, F., Kaltenbacher, M., Stingl, M., Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints. Struct. Multidiscip. O. 48 (2013), 173–185.
    • (2013) Struct. Multidiscip. O. , vol.48 , pp. 173-185
    • Wein, F.1    Kaltenbacher, M.2    Stingl, M.3
  • 86
    • 84894264952 scopus 로고    scopus 로고
    • Design methodology of piezoelectric energy-harvesting skin using topology optimization
    • Takezawa, A., Kitamura, M., Vatanabe, S.L., Silva, E.C.N., Design methodology of piezoelectric energy-harvesting skin using topology optimization. Struct. Multidiscip. O. 49 (2014), 281–297.
    • (2014) Struct. Multidiscip. O. , vol.49 , pp. 281-297
    • Takezawa, A.1    Kitamura, M.2    Vatanabe, S.L.3    Silva, E.C.N.4
  • 87
    • 69649107363 scopus 로고    scopus 로고
    • Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization
    • Nakasone, P.H., Silva, E.C., Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization. Proc. SPIE, 2009, 10.1117/12.816467.
    • (2009) Proc. SPIE
    • Nakasone, P.H.1    Silva, E.C.2
  • 88
    • 59449100173 scopus 로고    scopus 로고
    • Topology optimization of energy harvesting devices using piezoelectric materials
    • Zheng, B., Chang, C.-J., Gea, H.C., Topology optimization of energy harvesting devices using piezoelectric materials. Struct. Multidiscip. O. 38 (2009), 17–23.
    • (2009) Struct. Multidiscip. O. , vol.38 , pp. 17-23
    • Zheng, B.1    Chang, C.-J.2    Gea, H.C.3
  • 89
    • 84946935471 scopus 로고    scopus 로고
    • Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting
    • Jia, Y., Seshia, A.A., Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J. Microelectromech. Syst. 25 (2016), 108–117.
    • (2016) J. Microelectromech. Syst. , vol.25 , pp. 108-117
    • Jia, Y.1    Seshia, A.A.2
  • 90
    • 85020288435 scopus 로고    scopus 로고
    • Introducing arc-shaped piezoelectric elements into energy harvesters
    • Yang, Z., Wang, Y.Q., Zuo, L., Zu, J., Introducing arc-shaped piezoelectric elements into energy harvesters. Energ. Convers. Manag. 148 (2017), 260–266.
    • (2017) Energ. Convers. Manag. , vol.148 , pp. 260-266
    • Yang, Z.1    Wang, Y.Q.2    Zuo, L.3    Zu, J.4
  • 91
    • 84857291859 scopus 로고    scopus 로고
    • Charge redistribution in piezoelectric energy harvesters
    • Stewart, M., Weaver, P.M., Cain, M., Charge redistribution in piezoelectric energy harvesters. Appl. Phys. Lett. 100 (2012), 073901–073901-3.
    • (2012) Appl. Phys. Lett. , vol.100 , pp. 073901-073901-3
    • Stewart, M.1    Weaver, P.M.2    Cain, M.3
  • 92
    • 85026357054 scopus 로고    scopus 로고
    • A. new electrode design method in piezoelectric vibration energy harvesters to maximize output power
    • Du, S., Jia, Y., Chen, S.-T., Zhao, C., Sun, B., Arroyo, E., Seshia, A.A., A. new electrode design method in piezoelectric vibration energy harvesters to maximize output power. Sensor. Actuator. Phys. 263 (2017), 693–701.
    • (2017) Sensor. Actuator. Phys. , vol.263 , pp. 693-701
    • Du, S.1    Jia, Y.2    Chen, S.-T.3    Zhao, C.4    Sun, B.5    Arroyo, E.6    Seshia, A.A.7
  • 93
    • 77952994643 scopus 로고    scopus 로고
    • Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams
    • Erturk, A., Tarazaga, P.A., Farmer, J.R., Inman, D.J., Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust., 131, 2009, 011010.
    • (2009) J. Vib. Acoust. , vol.131 , pp. 011010
    • Erturk, A.1    Tarazaga, P.A.2    Farmer, J.R.3    Inman, D.J.4
  • 94
    • 24644486968 scopus 로고    scopus 로고
    • Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment
    • Cho, J., Anderson, M., Richards, R., Bahr, D., Richards, C., Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment. J. Micromech. Microeng., 15, 2005, 1804.
    • (2005) J. Micromech. Microeng. , vol.15 , pp. 1804
    • Cho, J.1    Anderson, M.2    Richards, R.3    Bahr, D.4    Richards, C.5
  • 95
    • 85166813979 scopus 로고    scopus 로고
    • J. Zu. Charge Redistribution in Flextensional Piezoelectric Energy Harvesters. Trans Tech.
    • Yang, Z.B. and J. Zu. Charge Redistribution in Flextensional Piezoelectric Energy Harvesters. Trans Tech.
    • Yang, Z.B.1
  • 96
    • 84925645147 scopus 로고    scopus 로고
    • Effect of electrode configurations on piezoelectric vibration energy harvesting performance
    • Kim, M., Dugundji, J., Wardle, B.L., Effect of electrode configurations on piezoelectric vibration energy harvesting performance. Smart Mater. Struct., 24, 2015, 045026.
    • (2015) Smart Mater. Struct. , vol.24 , pp. 045026
    • Kim, M.1    Dugundji, J.2    Wardle, B.L.3
  • 97
    • 84866060236 scopus 로고    scopus 로고
    • Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure
    • Zhao, J., Zheng, X., Zhou, L., Zhang, Y., Sun, J., Dong, W., Deng, S., Peng, S., Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure. Smart Mater. Struct., 21, 2012, 105006.
    • (2012) Smart Mater. Struct. , vol.21 , pp. 105006
    • Zhao, J.1    Zheng, X.2    Zhou, L.3    Zhang, Y.4    Sun, J.5    Dong, W.6    Deng, S.7    Peng, S.8
  • 98
    • 84928624084 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting through shear mode operation
    • Malakooti, M.H., Sodano, H.A., Piezoelectric energy harvesting through shear mode operation. Smart Mater. Struct., 24, 2015, 055005.
    • (2015) Smart Mater. Struct. , vol.24 , pp. 055005
    • Malakooti, M.H.1    Sodano, H.A.2
  • 101
    • 84881267234 scopus 로고    scopus 로고
    • Single degree of freedom shear-mode piezoelectric energy harvester
    • Aladwani, A., Aldraihem, O., Baz, A., Single degree of freedom shear-mode piezoelectric energy harvester. J. Vib. Acoust., 135, 2013, 051011.
    • (2013) J. Vib. Acoust. , vol.135 , pp. 051011
    • Aladwani, A.1    Aldraihem, O.2    Baz, A.3
  • 103
    • 85018472482 scopus 로고    scopus 로고
    • A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach
    • Zou, H.-X., Zhang, W.-M., Li, W.-B., Hu, K.-M., Wei, K.-X., Peng, Z.-K., Meng, G., A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Appl. Phys. Lett., 110, 2017, 163904.
    • (2017) Appl. Phys. Lett. , vol.110 , pp. 163904
    • Zou, H.-X.1    Zhang, W.-M.2    Li, W.-B.3    Hu, K.-M.4    Wei, K.-X.5    Peng, Z.-K.6    Meng, G.7
  • 106
    • 84904011619 scopus 로고    scopus 로고
    • A flextensional piezo-composite structure for energy harvesting applications
    • Tufekcioglu, E., Dogan, A., A flextensional piezo-composite structure for energy harvesting applications. Sensor. Actuator. Phys. 216 (2014), 355–363.
    • (2014) Sensor. Actuator. Phys. , vol.216 , pp. 355-363
    • Tufekcioglu, E.1    Dogan, A.2
  • 108
    • 85011835425 scopus 로고    scopus 로고
    • Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester
    • Yang, Z., Zu, J., Luo, J., Peng, Y., Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 28 (2017), 357–366.
    • (2017) J. Intell. Mater. Syst. Struct. , vol.28 , pp. 357-366
    • Yang, Z.1    Zu, J.2    Luo, J.3    Peng, Y.4
  • 111
    • 84904976718 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting from traffic-induced pavement vibrations
    • Jiang, X., Li, Y., Li, J., Wang, J., Yao, J., Piezoelectric energy harvesting from traffic-induced pavement vibrations. J. Renew. Sustain. Energ., 6, 2014, 043110.
    • (2014) J. Renew. Sustain. Energ. , vol.6 , pp. 043110
    • Jiang, X.1    Li, Y.2    Li, J.3    Wang, J.4    Yao, J.5
  • 112
    • 84902192173 scopus 로고    scopus 로고
    • Energy harvesting of piezoelectric stack actuator from a shock event
    • Lee, A.J., Wang, Y., Inman, D.J., Energy harvesting of piezoelectric stack actuator from a shock event. J. Vib. Acoust., 136, 2014, 011016.
    • (2014) J. Vib. Acoust. , vol.136 , pp. 011016
    • Lee, A.J.1    Wang, Y.2    Inman, D.J.3
  • 113
    • 84964555258 scopus 로고    scopus 로고
    • A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads
    • Wang, X., Shi, Z., Wang, J., Xiang, H., A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads. Smart Mater. Struct., 25, 2016, 055005.
    • (2016) Smart Mater. Struct. , vol.25 , pp. 055005
    • Wang, X.1    Shi, Z.2    Wang, J.3    Xiang, H.4
  • 114
    • 79960610090 scopus 로고    scopus 로고
    • A piezoelectric multilayer-stacked hybrid actuation/transduction system
    • Xu, T.-B., Jiang, X., Su, J., A piezoelectric multilayer-stacked hybrid actuation/transduction system. Appl. Phys. Lett., 98, 2011, 243503.
    • (2011) Appl. Phys. Lett. , vol.98 , pp. 243503
    • Xu, T.-B.1    Jiang, X.2    Su, J.3
  • 115
    • 77957654636 scopus 로고    scopus 로고
    • High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers
    • Morimoto, K., Kanno, I., Wasa, K., Kotera, H., High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensor. Actuator. Phys. 163 (2010), 428–432.
    • (2010) Sensor. Actuator. Phys. , vol.163 , pp. 428-432
    • Morimoto, K.1    Kanno, I.2    Wasa, K.3    Kotera, H.4
  • 116
    • 84973573504 scopus 로고    scopus 로고
    • Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils
    • Yeo, H.G., Ma, X., Rahn, C., Trolier-McKinstry, S., Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils. Adv. Funct. Mater. 26 (2016), 5940–5946.
    • (2016) Adv. Funct. Mater. , vol.26 , pp. 5940-5946
    • Yeo, H.G.1    Ma, X.2    Rahn, C.3    Trolier-McKinstry, S.4
  • 118
    • 84880317348 scopus 로고    scopus 로고
    • Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
    • Xu, S., Hansen, B.J., Wang, Z.L., Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun., 1, 2010, 93.
    • (2010) Nat. Commun. , vol.1 , pp. 93
    • Xu, S.1    Hansen, B.J.2    Wang, Z.L.3
  • 119
    • 84889674209 scopus 로고    scopus 로고
    • Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film
    • Tang, G., Yang, B., Liu, J.-q., Xu, B., Zhu, H.-y., Yang, C.-s., Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensor. Actuator. Phys. 205 (2014), 150–155.
    • (2014) Sensor. Actuator. Phys. , vol.205 , pp. 150-155
    • Tang, G.1    Yang, B.2    Liu, J.-Q.3    Xu, B.4    Zhu, H.-Y.5    Yang, C.-S.6
  • 120
    • 85166824239 scopus 로고    scopus 로고
    • (2008). Performance analysis of single crystal PMN-PZT unimorphs for piezoelectric energy harvesting. in Adaptive Structures and Intelligent Systems, SMASIS2008.
    • Erturk, A., Bilgen, O., and Inman, D.J. (2008). Performance analysis of single crystal PMN-PZT unimorphs for piezoelectric energy harvesting. in Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2008.
    • Proceedings of the ASME Conference on Smart Materials
    • Erturk, A.1    Bilgen, O.2    Inman, D.J.3
  • 121
    • 84904709233 scopus 로고    scopus 로고
    • Self-powered cardiac pacemaker Enabled by flexible single crystalline PMN-PT piezoelectric energy harvester
    • Hwang, G.T., Park, H., Lee, J.H., Oh, S., Park, K.I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., et al. Self-powered cardiac pacemaker Enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26 (2014), 4880–4887.
    • (2014) Adv. Mater. , vol.26 , pp. 4880-4887
    • Hwang, G.T.1    Park, H.2    Lee, J.H.3    Oh, S.4    Park, K.I.5    Byun, M.6    Park, H.7    Ahn, G.8    Jeong, C.K.9    No, K.10
  • 124
    • 84879092630 scopus 로고    scopus 로고
    • Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device
    • Xu, S., Yeh, Y.W., Poirier, G., McAlpine, M.C., Register, R.A., Yao, N., Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett. 13 (2013), 2393–2398.
    • (2013) Nano Lett. , vol.13 , pp. 2393-2398
    • Xu, S.1    Yeh, Y.W.2    Poirier, G.3    McAlpine, M.C.4    Register, R.A.5    Yao, N.6
  • 125
    • 85019559438 scopus 로고    scopus 로고
    • PMN-PT nanostructures for energy scavenging
    • Wu, F., Yao, N., PMN-PT nanostructures for energy scavenging. Semicond. Sci. Technol., 32, 2017, 063001.
    • (2017) Semicond. Sci. Technol. , vol.32 , pp. 063001
    • Wu, F.1    Yao, N.2
  • 126
    • 85013360380 scopus 로고    scopus 로고
    • A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring
    • Chen, Y., Zhang, Y., Yuan, F., Ding, F., Schmidt, O.G., A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring. Adv. Electron. Mater., 3, 2017, 10.1002/aelm.201600540.
    • (2017) Adv. Electron. Mater. , vol.3
    • Chen, Y.1    Zhang, Y.2    Yuan, F.3    Ding, F.4    Schmidt, O.G.5
  • 127
    • 79960213460 scopus 로고    scopus 로고
    • Multiple cell configuration electromagnetic vibration energy harvester
    • Marin, A., Bressers, S., Priya, S., Multiple cell configuration electromagnetic vibration energy harvester. J. Phys. D, 44, 2011, 295501.
    • (2011) J. Phys. D , vol.44 , pp. 295501
    • Marin, A.1    Bressers, S.2    Priya, S.3
  • 129
    • 85019398388 scopus 로고    scopus 로고
    • On the efficiency of piezoelectric energy harvesters
    • Yang, Z., Erturk, A., Zu, J., On the efficiency of piezoelectric energy harvesters. Extreme Mech. Lett. 15 (2017), 26–37.
    • (2017) Extreme Mech. Lett. , vol.15 , pp. 26-37
    • Yang, Z.1    Erturk, A.2    Zu, J.3
  • 130
    • 84928636666 scopus 로고    scopus 로고
    • Efficiency of piezoelectric mechanical vibration energy harvesting
    • Kim, M., Dugundji, J., Wardle, B.L., Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Mater. Struct., 24, 2015, 055006.
    • (2015) Smart Mater. Struct. , vol.24 , pp. 055006
    • Kim, M.1    Dugundji, J.2    Wardle, B.L.3
  • 131
    • 84856401861 scopus 로고    scopus 로고
    • The performance of a self-excited fluidic energy harvester
    • Akaydin, H.D., Elvin, N., Andreopoulos, Y., The performance of a self-excited fluidic energy harvester. Smart Mater. Struct., 21, 2012, 025007.
    • (2012) Smart Mater. Struct. , vol.21 , pp. 025007
    • Akaydin, H.D.1    Elvin, N.2    Andreopoulos, Y.3
  • 132
    • 84903699927 scopus 로고    scopus 로고
    • The power and efficiency limits of piezoelectric energy harvesting
    • Shafer, M.W., Garcia, E., The power and efficiency limits of piezoelectric energy harvesting. J. Vib. Acoust., 136, 2014, 021007.
    • (2014) J. Vib. Acoust. , vol.136 , pp. 021007
    • Shafer, M.W.1    Garcia, E.2
  • 133
    • 27144528640 scopus 로고    scopus 로고
    • On the effectiveness of vibration-based energy harvesting
    • Roundy, S., On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16 (2005), 809–823.
    • (2005) J. Intell. Mater. Syst. Struct. , vol.16 , pp. 809-823
    • Roundy, S.1
  • 134
    • 84948800274 scopus 로고    scopus 로고
    • A new figure of merit for wideband vibration energy harvesters
    • Liu, W.Q., Badel, A., Formosa, F., Wu, Y.P., A new figure of merit for wideband vibration energy harvesters. Smart Mater. Struct., 24, 2015, 125012.
    • (2015) Smart Mater. Struct. , vol.24 , pp. 125012
    • Liu, W.Q.1    Badel, A.2    Formosa, F.3    Wu, Y.P.4
  • 136
    • 85022183696 scopus 로고    scopus 로고
    • Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester
    • Dhote, S., Yang, Z., Zu, J., Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester. Mech. Syst. Signal Process. 98 (2018), 268–280.
    • (2018) Mech. Syst. Signal Process. , vol.98 , pp. 268-280
    • Dhote, S.1    Yang, Z.2    Zu, J.3
  • 137
    • 70349972972 scopus 로고    scopus 로고
    • Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film
    • Lee, B., Lin, S., Wu, W., Wang, X., Chang, P., Lee, C., Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J. Micromech. Microeng., 19, 2009, 065014.
    • (2009) J. Micromech. Microeng. , vol.19 , pp. 065014
    • Lee, B.1    Lin, S.2    Wu, W.3    Wang, X.4    Chang, P.5    Lee, C.6
  • 138
    • 68849103726 scopus 로고    scopus 로고
    • Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting
    • Shen, D., Park, J.-H., Noh, J.H., Choe, S.-Y., Kim, S.-H., Wikle, H.C., Kim, D.-J., Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensor. Actuator. Phys. 154 (2009), 103–108.
    • (2009) Sensor. Actuator. Phys. , vol.154 , pp. 103-108
    • Shen, D.1    Park, J.-H.2    Noh, J.H.3    Choe, S.-Y.4    Kim, S.-H.5    Wikle, H.C.6    Kim, D.-J.7
  • 142
    • 85006043237 scopus 로고    scopus 로고
    • A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding
    • Tang, G., Yang, B., Hou, C., Li, G., Liu, J., Chen, X., Yang, C., A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding. Sci. Rep., 6, 2016, 38798.
    • (2016) Sci. Rep. , vol.6 , pp. 38798
    • Tang, G.1    Yang, B.2    Hou, C.3    Li, G.4    Liu, J.5    Chen, X.6    Yang, C.7
  • 144
    • 71649092912 scopus 로고    scopus 로고
    • Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer
    • Dai, X., Wen, Y., Li, P., Yang, J., Zhang, G., Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer. Sensor. Actuator. Phys. 156 (2009), 350–358.
    • (2009) Sensor. Actuator. Phys. , vol.156 , pp. 350-358
    • Dai, X.1    Wen, Y.2    Li, P.3    Yang, J.4    Zhang, G.5
  • 145
    • 77949893197 scopus 로고    scopus 로고
    • Modeling and experimental verification of proof mass effects on vibration energy harvester performance
    • Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L., Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct., 19, 2010, 045023.
    • (2010) Smart Mater. Struct. , vol.19 , pp. 045023
    • Kim, M.1    Hoegen, M.2    Dugundji, J.3    Wardle, B.L.4
  • 146
    • 85166812665 scopus 로고    scopus 로고
    • -H. (2010). Impedance matching for improving piezoelectric energy harvesting systems. in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics.
    • Liang, J., and Liao, W.-H. (2010). Impedance matching for improving piezoelectric energy harvesting systems. in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics.
    • Liang, J.1    Liao, W.2
  • 147
    • 79551484697 scopus 로고    scopus 로고
    • Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation
    • Gu, L., Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron. J. 42 (2011), 277–282.
    • (2011) Microelectron. J. , vol.42 , pp. 277-282
    • Gu, L.1
  • 148
    • 79955380630 scopus 로고    scopus 로고
    • A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting
    • Li, X., Guo, M., Dong, S., A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 (2011), 698–703.
    • (2011) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.58 , pp. 698-703
    • Li, X.1    Guo, M.2    Dong, S.3
  • 149
    • 79961213299 scopus 로고    scopus 로고
    • Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness
    • Yen, T.-T., Hirasawa, T., Wright, P.K., Pisano, A.P., Lin, L., Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness. J. Micromech. Microeng., 21, 2011, 085037.
    • (2011) J. Micromech. Microeng. , vol.21 , pp. 085037
    • Yen, T.-T.1    Hirasawa, T.2    Wright, P.K.3    Pisano, A.P.4    Lin, L.5
  • 150
    • 84880299484 scopus 로고    scopus 로고
    • A new energy harvester design for high power output at low frequencies
    • Dhakar, L., Liu, H., Tay, F., Lee, C., A new energy harvester design for high power output at low frequencies. Sensor. Actuator. Phys. 199 (2013), 344–352.
    • (2013) Sensor. Actuator. Phys. , vol.199 , pp. 344-352
    • Dhakar, L.1    Liu, H.2    Tay, F.3    Lee, C.4
  • 151
    • 84872732801 scopus 로고    scopus 로고
    • A novel two-degrees-of-freedom piezoelectric energy harvester
    • Wu, H., Tang, L., Yang, Y., Soh, C.K., A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 24 (2013), 357–368.
    • (2013) J. Intell. Mater. Syst. Struct. , vol.24 , pp. 357-368
    • Wu, H.1    Tang, L.2    Yang, Y.3    Soh, C.K.4
  • 152
    • 84877286883 scopus 로고    scopus 로고
    • Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites
    • Arrieta, A., Delpero, T., Bergamini, A., Ermanni, P., Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102 (2013), 173904–173904-4.
    • (2013) Appl. Phys. Lett. , vol.102 , pp. 173904-173904-4
    • Arrieta, A.1    Delpero, T.2    Bergamini, A.3    Ermanni, P.4
  • 153
    • 84903881068 scopus 로고    scopus 로고
    • A vibration energy harvester using magnet/piezoelectric composite transducer
    • Qiu, J., Chen, H., Wen, Y., Li, P., Yang, J., Li, W., A vibration energy harvester using magnet/piezoelectric composite transducer. J. Appl. Physiol., 115, 2014, 17E522.
    • (2014) J. Appl. Physiol. , vol.115 , pp. 17E522
    • Qiu, J.1    Chen, H.2    Wen, Y.3    Li, P.4    Yang, J.5    Li, W.6
  • 154
    • 84905377745 scopus 로고    scopus 로고
    • Enhanced energy harvesting performance of the piezoelectric unimorph with perpendicular electrodes
    • Ma, M., Xia, S., Li, Z., Xu, Z., Yao, X., Enhanced energy harvesting performance of the piezoelectric unimorph with perpendicular electrodes. Appl. Phys. Lett., 105, 2014, 043905.
    • (2014) Appl. Phys. Lett. , vol.105 , pp. 043905
    • Ma, M.1    Xia, S.2    Li, Z.3    Xu, Z.4    Yao, X.5
  • 155
    • 84898449091 scopus 로고    scopus 로고
    • Experimental study of a multi-impact energy harvester under low frequency excitations
    • Zhang, Y., Cai, C., Zhang, W., Experimental study of a multi-impact energy harvester under low frequency excitations. Smart Mater. Struct., 23, 2014, 055002.
    • (2014) Smart Mater. Struct. , vol.23 , pp. 055002
    • Zhang, Y.1    Cai, C.2    Zhang, W.3
  • 156
    • 84902440493 scopus 로고    scopus 로고
    • Energy harvester array using piezoelectric circular diaphragm for broadband vibration
    • Xiao, Z., Yang, T.q., Dong, Y., Wang, X.c., Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Appl. Phys. Lett., 104, 2014, 223904.
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 223904
    • Xiao, Z.1    Yang, T.Q.2    Dong, Y.3    Wang, X.C.4
  • 157
    • 84939506192 scopus 로고    scopus 로고
    • A miniature mechanical-piezoelectric-configured three-axis vibrational energy harvester
    • Hung, C.-F., Chung, T.-K., Yeh, P.-C., Chen, C.-C., Wang, C.-M., Lin, S.-H., A miniature mechanical-piezoelectric-configured three-axis vibrational energy harvester. IEEE Sens. J. 15 (2015), 5601–5615.
    • (2015) IEEE Sens. J. , vol.15 , pp. 5601-5615
    • Hung, C.-F.1    Chung, T.-K.2    Yeh, P.-C.3    Chen, C.-C.4    Wang, C.-M.5    Lin, S.-H.6
  • 158
    • 84940703811 scopus 로고    scopus 로고
    • A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction
    • Singh, K.A., Kumar, R., Weber, R.J., A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction. IEEE Trans. Power Electron. 30 (2015), 6763–6774.
    • (2015) IEEE Trans. Power Electron. , vol.30 , pp. 6763-6774
    • Singh, K.A.1    Kumar, R.2    Weber, R.J.3
  • 159
    • 84928911791 scopus 로고    scopus 로고
    • Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations
    • Sriramdas, R., Chiplunkar, S., Cuduvally, R.M., Pratap, R., Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations. IEEE Sens. J. 15 (2015), 3338–3348.
    • (2015) IEEE Sens. J. , vol.15 , pp. 3338-3348
    • Sriramdas, R.1    Chiplunkar, S.2    Cuduvally, R.M.3    Pratap, R.4
  • 160
    • 84937779498 scopus 로고    scopus 로고
    • Harvesting vibration energy using two modal vibrations of a folded piezoelectric device
    • Gong, L.J., Pan, Q.S., Li, W., Yan, G.Y., Liu, Y.B., Feng, Z.H., Harvesting vibration energy using two modal vibrations of a folded piezoelectric device. Appl. Phys. Lett., 107, 2015, 033904.
    • (2015) Appl. Phys. Lett. , vol.107 , pp. 033904
    • Gong, L.J.1    Pan, Q.S.2    Li, W.3    Yan, G.Y.4    Liu, Y.B.5    Feng, Z.H.6
  • 161
    • 85022079716 scopus 로고    scopus 로고
    • High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate
    • Yi, Z., Yang, B., Li, G., Liu, J., Chen, X., Wang, X., Yang, C., High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate. Appl. Phys. Lett., 111, 2017, 013902.
    • (2017) Appl. Phys. Lett. , vol.111 , pp. 013902
    • Yi, Z.1    Yang, B.2    Li, G.3    Liu, J.4    Chen, X.5    Wang, X.6    Yang, C.7
  • 162
    • 85019766615 scopus 로고    scopus 로고
    • Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure
    • He, Q., Jiang, T., Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure. Appl. Phys. Lett., 110, 2017, 213901.
    • (2017) Appl. Phys. Lett. , vol.110 , pp. 213901
    • He, Q.1    Jiang, T.2
  • 163
    • 85013759609 scopus 로고    scopus 로고
    • Performance of a piezoelectric energy harvester in actual rain
    • Wong, V.-K., Ho, J.-H., Chai, A.-B., Performance of a piezoelectric energy harvester in actual rain. Energy 124 (2017), 364–371.
    • (2017) Energy , vol.124 , pp. 364-371
    • Wong, V.-K.1    Ho, J.-H.2    Chai, A.-B.3
  • 165
    • 85008697507 scopus 로고    scopus 로고
    • Development of vibration-based piezoelectric raindrop energy harvesting system
    • Wong, C.H., Dahari, Z., Development of vibration-based piezoelectric raindrop energy harvesting system. J. Electron. Mater. 46 (2017), 1869–1882.
    • (2017) J. Electron. Mater. , vol.46 , pp. 1869-1882
    • Wong, C.H.1    Dahari, Z.2
  • 166
    • 85013448338 scopus 로고    scopus 로고
    • On accumulation of water droplets in piezoelectric energy harvesting
    • Wong, V.-K., Ho, J.-H., Sam, H.-K., On accumulation of water droplets in piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 28 (2017), 521–530.
    • (2017) J. Intell. Mater. Syst. Struct. , vol.28 , pp. 521-530
    • Wong, V.-K.1    Ho, J.-H.2    Sam, H.-K.3
  • 167
    • 85009962015 scopus 로고    scopus 로고
    • Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements
    • Guo, L., Lu, Q., Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew. Sustain. Energ. Rev. 72 (2017), 761–773.
    • (2017) Renew. Sustain. Energ. Rev. , vol.72 , pp. 761-773
    • Guo, L.1    Lu, Q.2
  • 168
    • 85166807200 scopus 로고    scopus 로고
    • -L. (2009). Event sensing and energy-harvesting power sources for gun-fired munitions. in SPIE Smart Structures Materials+ Nondestructive Evaluation and Health Monit.oring. International Society for Optics and Photonics.
    • Rastegar, J., Murray, R., Pereira, C., and Nguyen, H.-L. (2009). Event sensing and energy-harvesting power sources for gun-fired munitions. in SPIE Smart Structures Materials+ Nondestructive Evaluation and Health Monit.oring. International Society for Optics and Photonics.
    • Rastegar, J.1    Murray, R.2    Pereira, C.3    Nguyen, H.4
  • 171
    • 84988504463 scopus 로고    scopus 로고
    • An energy harvesting underwater acoustic transmitter for aquatic animals
    • Li, H., Tian, C., Lu, J., Myjak, M.J., Martinez, J.J., Brown, R.S., Deng, Z.D., An energy harvesting underwater acoustic transmitter for aquatic animals. Sci. Rep., 6, 2016, 33804.
    • (2016) Sci. Rep. , vol.6 , pp. 33804
    • Li, H.1    Tian, C.2    Lu, J.3    Myjak, M.J.4    Martinez, J.J.5    Brown, R.S.6    Deng, Z.D.7
  • 172
    • 84890253320 scopus 로고    scopus 로고
    • Biomechanics and Motor Control of Human Movement
    • John Wiley & Sons
    • Winter, D.A., Biomechanics and Motor Control of Human Movement. 2009, John Wiley & Sons.
    • (2009)
    • Winter, D.A.1
  • 173
    • 35848965238 scopus 로고    scopus 로고
    • Muscles do more positive than negative work in human locomotion
    • DeVita, P., Helseth, J., Hortobagyi, T., Muscles do more positive than negative work in human locomotion. J. Exp. Biol. 210 (2007), 3361–3373.
    • (2007) J. Exp. Biol. , vol.210 , pp. 3361-3373
    • DeVita, P.1    Helseth, J.2    Hortobagyi, T.3
  • 174
    • 0035653531 scopus 로고    scopus 로고
    • When active muscles lengthen: properties and consequences of eccentric contractions
    • Lindstedt, S., LaStayo, P., Reich, T., When active muscles lengthen: properties and consequences of eccentric contractions. Physiology 16 (2001), 256–261.
    • (2001) Physiology , vol.16 , pp. 256-261
    • Lindstedt, S.1    LaStayo, P.2    Reich, T.3
  • 175
    • 0030408129 scopus 로고    scopus 로고
    • Human-powered wearable computing
    • Starner, T., Human-powered wearable computing. IBM Syst. J. 35 (1996), 618–629.
    • (1996) IBM Syst. J. , vol.35 , pp. 618-629
    • Starner, T.1
  • 176
    • 85166805045 scopus 로고    scopus 로고
    • Evaluation of motions and actuation methods for biomechanical energy harvesting. in Power Electronics Specialists Conference. PESC 04. 2004 IEEE 35th Annual. IEEE., 2004
    • Niu P., Chapman, P., Riemer, R., and Zhang, X. (2004). Evaluation of motions and actuation methods for biomechanical energy harvesting. in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. IEEE.
    • (2004)
    • Niu, P.1    Chapman, P.2    Riemer, R.3    Zhang, X.4
  • 177
    • 79955103117 scopus 로고    scopus 로고
    • Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions
    • Riemer, R., Shapiro, A., Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil., 8, 2011, 22.
    • (2011) J. Neuroeng. Rehabil. , vol.8 , pp. 22
    • Riemer, R.1    Shapiro, A.2
  • 178
    • 84984868910 scopus 로고    scopus 로고
    • An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking
    • Partridge, J., Bucknall, R., An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking. Cogent Eng., 3, 2016, 1215203.
    • (2016) Cogent Eng. , vol.3 , pp. 1215203
    • Partridge, J.1    Bucknall, R.2
  • 179
    • 85166846913 scopus 로고    scopus 로고
    • Footstep energy harvesting using heel strike-induced airflow for human activity sensing. in Wearable and Implantable Body Sensor Networks (BSN) IEEE 13th International Conference. 2016. IEEE.
    • Fu, H., Cao, K., Xu, R., Bhouri, M.A., Martínez-Botas, R., Kim, S.-G., and Yeatman, E.M. Footstep energy harvesting using heel strike-induced airflow for human activity sensing. in Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference. 2016. IEEE.
    • (2016)
    • Fu, H.1    Cao, K.2    Xu, R.3    Bhouri, M.A.4    Martínez-Botas, R.5    Kim, S.-G.6    Yeatman, E.M.7
  • 181
    • 0004721963 scopus 로고    scopus 로고
    • Unobtrusive Integration of Magnetic Generator Systems into Common Footwear
    • Massachusetts Institute of Technology
    • Hayashida, J.Y., Unobtrusive Integration of Magnetic Generator Systems into Common Footwear. 2000, Massachusetts Institute of Technology.
    • (2000)
    • Hayashida, J.Y.1
  • 182
    • 0035330620 scopus 로고    scopus 로고
    • Energy scavenging with shoe-mounted piezoelectrics
    • Shenck, N.S., Paradiso, J.A., Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21 (2001), 30–42.
    • (2001) IEEE Micro , vol.21 , pp. 30-42
    • Shenck, N.S.1    Paradiso, J.A.2
  • 183
    • 78649263422 scopus 로고    scopus 로고
    • Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers
    • Moro, L., Benasciutti, D., Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Mater. Struct., 19, 2010, 115011.
    • (2010) Smart Mater. Struct. , vol.19 , pp. 115011
    • Moro, L.1    Benasciutti, D.2
  • 184
    • 85017135125 scopus 로고    scopus 로고
    • Scavenging energy from human walking through a shoe-mounted piezoelectric harvester
    • Fan, K., Liu, Z., Liu, H., Wang, L., Zhu, Y., Yu, B., Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett., 110, 2017, 143902.
    • (2017) Appl. Phys. Lett. , vol.110 , pp. 143902
    • Fan, K.1    Liu, Z.2    Liu, H.3    Wang, L.4    Zhu, Y.5    Yu, B.6
  • 185
    • 27144483585 scopus 로고    scopus 로고
    • Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts
    • Mateu, L., Moll, F., Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16 (2005), 835–845.
    • (2005) J. Intell. Mater. Syst. Struct. , vol.16 , pp. 835-845
    • Mateu, L.1    Moll, F.2
  • 186
    • 85166853579 scopus 로고    scopus 로고
    • A piezoelectric energy-harvesting shoe system for podiatric sensing. in Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE. IEEE., 2014
    • Meier, R., Kelly, N., Almog, O., and Chiang, P. (2014). A piezoelectric energy-harvesting shoe system for podiatric sensing. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE.
    • (2014)
    • Meier, R.1    Kelly, N.2    Almog, O.3    Chiang, P.4
  • 187
    • 84878313839 scopus 로고    scopus 로고
    • Shoe mounted PVDF piezoelectric transducer for energy harvesting
    • Fourie, D., Shoe mounted PVDF piezoelectric transducer for energy harvesting. MORJ Rep. 19 (2010), 66–70.
    • (2010) MORJ Rep. , vol.19 , pp. 66-70
    • Fourie, D.1
  • 189
    • 84904211354 scopus 로고    scopus 로고
    • A shoe-embedded piezoelectric energy harvester for wearable sensors
    • Zhao, J., You, Z., A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14 (2014), 12497–12510.
    • (2014) Sensors , vol.14 , pp. 12497-12510
    • Zhao, J.1    You, Z.2
  • 191
    • 84891781693 scopus 로고    scopus 로고
    • Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy
    • Daniels, A., Zhu, M., Tiwari, A., Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy. J. Phys. Conf. Ser., 476, 2013, 012047.
    • (2013) J. Phys. Conf. Ser. , vol.476 , pp. 012047
    • Daniels, A.1    Zhu, M.2    Tiwari, A.3
  • 192
    • 84907894709 scopus 로고    scopus 로고
    • Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism
    • Xie, L., Cai, M., Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism. Appl. Phys. Lett., 105, 2014, 143901.
    • (2014) Appl. Phys. Lett. , vol.105 , pp. 143901
    • Xie, L.1    Cai, M.2
  • 193
    • 85166864627 scopus 로고    scopus 로고
    • Design and optimization of a biomechanical energy harvesting device. in Power Electronics Specialists Conference. PESC 2008. IEEE. IEEE., 2008
    • Niu, P., Chapman, P., DiBerardino, L., and Hsiao-Wecksler, E. (2008). Design and optimization of a biomechanical energy harvesting device. in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE. IEEE.
    • (2008)
    • Niu, P.1    Chapman, P.2    DiBerardino, L.3    Hsiao-Wecksler, E.4
  • 194
    • 84947233802 scopus 로고    scopus 로고
    • Power approaches for implantable medical devices
    • Amar, A.B., Kouki, A.B., Cao, H., Power approaches for implantable medical devices. Sensors 15 (2015), 28889–28914.
    • (2015) Sensors , vol.15 , pp. 28889-28914
    • Amar, A.B.1    Kouki, A.B.2    Cao, H.3
  • 195
    • 85166793203 scopus 로고    scopus 로고
    • An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. in Biomedical Circuits and Systems Conference. BioCAS 2006. IEEE. IEEE., 2006
    • Bradley, P.D. (2006). An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. in Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE. IEEE.
    • (2006)
    • Bradley, P.D.1
  • 197
    • 13844296690 scopus 로고    scopus 로고
    • Digital technology for cardiac pacing
    • Padeletti, L., Barold, S.S., Digital technology for cardiac pacing. Am. J. Cardiol. 95 (2005), 479–482.
    • (2005) Am. J. Cardiol. , vol.95 , pp. 479-482
    • Padeletti, L.1    Barold, S.S.2
  • 198
    • 85166797604 scopus 로고    scopus 로고
    • -J. (2006). A 0.9-V 96-μW digital hearing aid chip with heterogeneous Σ−Δ DAC. in Proc. IEEE Symp. VLSI Circuits.
    • Kim, S., Cho, N., Song, S.-J., Kim, D., Kim, K., and Yoo, H.-J. (2006). A 0.9-V 96-μW digital hearing aid chip with heterogeneous Σ−Δ DAC. in Proc. IEEE Symp. VLSI Circuits.
    • Kim, S.1    Cho, N.2    Song, S.-J.3    Kim, D.4    Kim, K.5    Yoo, H.6
  • 202
    • 2442708539 scopus 로고    scopus 로고
    • Wireless implantable microsystems: high-density electronic interfaces to the nervous system
    • Wise, K.D., Anderson, D., Hetke, J., Kipke, D., Najafi, K., Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92 (2004), 76–97.
    • (2004) Proc. IEEE , vol.92 , pp. 76-97
    • Wise, K.D.1    Anderson, D.2    Hetke, J.3    Kipke, D.4    Najafi, K.5
  • 205
    • 0001916941 scopus 로고    scopus 로고
    • Cardiac image analysis: motion and deformation
    • I.M. Bankman Elsevier
    • Papademetris, X., Duncan, J.S., Cardiac image analysis: motion and deformation. Bankman, I.M., (eds.) Handbook of Medical Imaging, 2, 2000, Elsevier, 675–710.
    • (2000) Handbook of Medical Imaging , vol.2 , pp. 675-710
    • Papademetris, X.1    Duncan, J.S.2
  • 206
    • 84864264339 scopus 로고    scopus 로고
    • An active piezoelectric energy extraction method for pressure energy harvesting
    • Deterre, M., Lefeuvre, E., Dufour-Gergam, E., An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater. Struct., 21, 2012, 085004.
    • (2012) Smart Mater. Struct. , vol.21 , pp. 085004
    • Deterre, M.1    Lefeuvre, E.2    Dufour-Gergam, E.3
  • 208
    • 0037308673 scopus 로고    scopus 로고
    • Shear stress depends on vascular territory: comparison between common carotid and brachial artery
    • Dammers, R., Stifft, F., Tordoir, J.H., Hameleers, J.M., Hoeks, A.P., Kitslaar, P.J., Shear stress depends on vascular territory: comparison between common carotid and brachial artery. J. Appl. Physiol. 94 (2003), 485–489.
    • (2003) J. Appl. Physiol. , vol.94 , pp. 485-489
    • Dammers, R.1    Stifft, F.2    Tordoir, J.H.3    Hameleers, J.M.4    Hoeks, A.P.5    Kitslaar, P.J.6
  • 209
    • 84856427647 scopus 로고    scopus 로고
    • Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
    • Karami, M.A., Inman, D.J., Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett., 100, 2012, 042901.
    • (2012) Appl. Phys. Lett. , vol.100 , pp. 042901
    • Karami, M.A.1    Inman, D.J.2
  • 210
    • 85166820600 scopus 로고    scopus 로고
    • Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations. in Active and Passive Smart Structures and Integrated Systems 2011. International Society for Optics and Photonics.
    • Karami, M.A., and Inman, D.J. (2011). Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations. in Active and Passive Smart Structures and Integrated Systems 2011. International Society for Optics and Photonics.
    • (2011)
    • Karami, M.A.1    Inman, D.J.2
  • 211
    • 85019629409 scopus 로고    scopus 로고
    • Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers
    • Ansari, M., Karami, M.A., Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Smart Mater. Struct., 26, 2017, 065001.
    • (2017) Smart Mater. Struct. , vol.26 , pp. 065001
    • Ansari, M.1    Karami, M.A.2
  • 212
    • 84940702775 scopus 로고    scopus 로고
    • Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
    • Sharpes, N., Abdelkefi, A., Priya, S., Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters. Appl. Phys. Lett., 107, 2015, 093901.
    • (2015) Appl. Phys. Lett. , vol.107 , pp. 093901
    • Sharpes, N.1    Abdelkefi, A.2    Priya, S.3
  • 213
    • 84937818147 scopus 로고    scopus 로고
    • Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker
    • Alrashdan, M.H., Hamzah, A.A., Majlis, B., Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker. Microsystem Tech. 21 (2015), 1607–1617.
    • (2015) Microsystem Tech. , vol.21 , pp. 1607-1617
    • Alrashdan, M.H.1    Hamzah, A.A.2    Majlis, B.3
  • 215
    • 84946780307 scopus 로고    scopus 로고
    • Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy
    • Lu, B., Chen, Y., Ou, D., Chen, H., Diao, L., Zhang, W., Zheng, J., Ma, W., Sun, L., Feng, X., Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Sci. Rep., 2015, 5.
    • (2015) Sci. Rep. , pp. 5
    • Lu, B.1    Chen, Y.2    Ou, D.3    Chen, H.4    Diao, L.5    Zhang, W.6    Zheng, J.7    Ma, W.8    Sun, L.9    Feng, X.10
  • 218
    • 84928372224 scopus 로고    scopus 로고
    • Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications
    • Hwang, G.T., Byun, M., Jeong, C.K., Lee, K.J., Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 4 (2015), 646–658.
    • (2015) Adv. Healthc. Mater. , vol.4 , pp. 646-658
    • Hwang, G.T.1    Byun, M.2    Jeong, C.K.3    Lee, K.J.4
  • 219
    • 79955920150 scopus 로고    scopus 로고
    • A shear mode piezoelectric energy harvester based on a pressurized water flow
    • Wang, D.-A., Liu, N.-Z., A shear mode piezoelectric energy harvester based on a pressurized water flow. Sensor. Actuator. Phys. 167 (2011), 449–458.
    • (2011) Sensor. Actuator. Phys. , vol.167 , pp. 449-458
    • Wang, D.-A.1    Liu, N.-Z.2
  • 220
    • 27144516311 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting with a clamped circular plate: experimental study
    • Kim, S., Clark, W.W., Wang, Q.-M., Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16 (2005), 855–863.
    • (2005) J. Intell. Mater. Syst. Struct. , vol.16 , pp. 855-863
    • Kim, S.1    Clark, W.W.2    Wang, Q.-M.3
  • 221
    • 77953798193 scopus 로고    scopus 로고
    • Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms
    • Mo, C., Radziemski, L.J., Clark, W.W., Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms. Smart Mater. Struct., 19, 2010, 075010.
    • (2010) Smart Mater. Struct. , vol.19 , pp. 075010
    • Mo, C.1    Radziemski, L.J.2    Clark, W.W.3
  • 222
    • 19844362847 scopus 로고    scopus 로고
    • An investigation on piezoelectric energy harvesting for MEMS power sources
    • Sohn, J., Choi, S.B., Lee, D., An investigation on piezoelectric energy harvesting for MEMS power sources. J. Mech. Eng. Sci. 219 (2005), 429–436.
    • (2005) J. Mech. Eng. Sci. , vol.219 , pp. 429-436
    • Sohn, J.1    Choi, S.B.2    Lee, D.3
  • 225
    • 85166827869 scopus 로고    scopus 로고
    • An arterial cuff energy scavenger for implanted microsystems. in Bioinformatics and Biomedical Engineering. ICBBE 2008. The 2nd International Conference. 2008. IEEE.
    • Potkay, J.A., and Brooks K. An arterial cuff energy scavenger for implanted microsystems. in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference. 2008. IEEE.
    • (2008)
    • Potkay, J.A.1    Brooks, K.2
  • 226
    • 84921487900 scopus 로고    scopus 로고
    • A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies
    • Zhang, H., Zhang, X.-S., Cheng, X., Liu, Y., Han, M., Xue, X., Wang, S., Yang, F., Smith, A.S., Zhang, H., Xu, Z., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12 (2015), 296–304.
    • (2015) Nano Energy , vol.12 , pp. 296-304
    • Zhang, H.1    Zhang, X.-S.2    Cheng, X.3    Liu, Y.4    Han, M.5    Xue, X.6    Wang, S.7    Yang, F.8    Smith, A.S.9    Zhang, H.10    Xu, Z.11
  • 227
    • 84875060136 scopus 로고    scopus 로고
    • Wire troubleshooting and diagnosis: review and perspectives
    • Auzanneau, F., Wire troubleshooting and diagnosis: review and perspectives. Prog. Electromagn. Res. B 49 (2013), 253–279.
    • (2013) Prog. Electromagn. Res. B , vol.49 , pp. 253-279
    • Auzanneau, F.1
  • 228
    • 85016574760 scopus 로고    scopus 로고
    • Piezoelectric energy harvester for low engine vibrations
    • Khalatkar, A., Gupta, V., Piezoelectric energy harvester for low engine vibrations. J. Renew. Sustain. Energ., 9, 2017, 024701.
    • (2017) J. Renew. Sustain. Energ. , vol.9 , pp. 024701
    • Khalatkar, A.1    Gupta, V.2
  • 229
    • 84928526488 scopus 로고    scopus 로고
    • A nonlinear suspended energy harvester for a tire pressure monitoring system
    • Wang, Y.-J., Chen, C.-D., Lin, C.-C., Yu, J.-H., A nonlinear suspended energy harvester for a tire pressure monitoring system. Micromachines 6 (2015), 312–327.
    • (2015) Micromachines , vol.6 , pp. 312-327
    • Wang, Y.-J.1    Chen, C.-D.2    Lin, C.-C.3    Yu, J.-H.4
  • 230
    • 85016693901 scopus 로고    scopus 로고
    • Wideband electromagnetic energy harvesting from a rotating wheel
    • M. Lallart InTech
    • Wang, Y.-J., Shen, S.-C., Chen, C.-D., Wideband electromagnetic energy harvesting from a rotating wheel. Lallart, M., (eds.) Small-Scale Energy Harvesting, 2012, InTech, 10.5772/50739.
    • (2012) Small-Scale Energy Harvesting
    • Wang, Y.-J.1    Shen, S.-C.2    Chen, C.-D.3
  • 232
    • 84925740762 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting from torsional vibration in internal combustion engines
    • Kim, G., Piezoelectric energy harvesting from torsional vibration in internal combustion engines. Int. J. Auto. Technol. 16 (2015), 645–651.
    • (2015) Int. J. Auto. Technol. , vol.16 , pp. 645-651
    • Kim, G.1
  • 233
    • 84879895149 scopus 로고    scopus 로고
    • Large-scale vibration energy harvesting
    • Zuo, L., Tang, X., Large-scale vibration energy harvesting. J. Intell. Mater. Syst. Struct. 24 (2013), 1405–1430.
    • (2013) J. Intell. Mater. Syst. Struct. , vol.24 , pp. 1405-1430
    • Zuo, L.1    Tang, X.2
  • 234
    • 84911365191 scopus 로고    scopus 로고
    • Vibration energy harvesting system for railroad safety based on running vehicles
    • Tianchen, Y., Jian, Y., Ruigang, S., Xiaowei, L., Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater. Struct., 23, 2014, 125046.
    • (2014) Smart Mater. Struct. , vol.23 , pp. 125046
    • Tianchen, Y.1    Jian, Y.2    Ruigang, S.3    Xiaowei, L.4
  • 235
    • 84988043508 scopus 로고    scopus 로고
    • Energy harvesting technologies for tire pressure monitoring systems
    • Bowen, C., Arafa, M., Energy harvesting technologies for tire pressure monitoring systems. Adv. Energy Mater., 5, 2015, 10.1002/aenm.201401787.
    • (2015) Adv. Energy Mater. , vol.5
    • Bowen, C.1    Arafa, M.2
  • 236
    • 84902271253 scopus 로고    scopus 로고
    • A comprehensive study on technologies of tyre monitoring systems and possible energy solutions
    • Kubba, A.E., Jiang, K., A comprehensive study on technologies of tyre monitoring systems and possible energy solutions. Sensors (Basel) 14 (2014), 10306–10345.
    • (2014) Sensors (Basel) , vol.14 , pp. 10306-10345
    • Kubba, A.E.1    Jiang, K.2
  • 237
    • 85166807795 scopus 로고    scopus 로고
    • Evaluation of energy harvesting concepts for tire pressure monitoring systems. Proceedings of Power MEMS
    • Löhndorf, M., Kvisterøy, T., Westby, E., and Halvorsen, E. (2007). Evaluation of energy harvesting concepts for tire pressure monitoring systems. Proceedings of Power MEMS, p. 331–334.
    • (2007) , pp. 331-334
    • Löhndorf, M.1    Kvisterøy, T.2    Westby, E.3    Halvorsen, E.4
  • 238
    • 84927056053 scopus 로고    scopus 로고
    • Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer
    • Kubba, A.E., Behroozi, M., Olatunbosun, O.A., Anthony, C., Jiang, K., Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer. Tire Sci. Technol. 42 (2014), 16–34.
    • (2014) Tire Sci. Technol. , vol.42 , pp. 16-34
    • Kubba, A.E.1    Behroozi, M.2    Olatunbosun, O.A.3    Anthony, C.4    Jiang, K.5
  • 239
    • 85018484517 scopus 로고    scopus 로고
    • A strain-based method to estimate slip angle and tire working conditions for intelligent tires using fuzzy logic
    • Garcia-Pozuelo, D., Yunta, J., Olatunbosun, O., Yang, X., Diaz, V., A strain-based method to estimate slip angle and tire working conditions for intelligent tires using fuzzy logic. Sensors (Basel), 17, 2017, 874.
    • (2017) Sensors (Basel) , vol.17 , pp. 874
    • Garcia-Pozuelo, D.1    Yunta, J.2    Olatunbosun, O.3    Yang, X.4    Diaz, V.5
  • 240
    • 84955661712 scopus 로고    scopus 로고
    • OPTYRE—A new technology for tire monitoring: Evidence of contact patch phenomena
    • Roveri, N., Pepe, G., Carcaterra, A., OPTYRE—A new technology for tire monitoring: Evidence of contact patch phenomena. Mech. Syst. Signal Process. 66 (2016), 793–810.
    • (2016) Mech. Syst. Signal Process. , vol.66 , pp. 793-810
    • Roveri, N.1    Pepe, G.2    Carcaterra, A.3
  • 241
    • 84938355530 scopus 로고    scopus 로고
    • Rolling deformation of truck tires: measurement and analysis using a tire sensing approach
    • Xiong, Y., Tuononen, A., Rolling deformation of truck tires: measurement and analysis using a tire sensing approach. J. Terramech. 61 (2015), 33–42.
    • (2015) J. Terramech. , vol.61 , pp. 33-42
    • Xiong, Y.1    Tuononen, A.2
  • 242
    • 84907892235 scopus 로고    scopus 로고
    • A laser-based sensor system for tire tread deformation measurement
    • Xiong, Y., Tuononen, A., A laser-based sensor system for tire tread deformation measurement. Meas. Sci. Tech., 25, 2014, 115103.
    • (2014) Meas. Sci. Tech. , vol.25 , pp. 115103
    • Xiong, Y.1    Tuononen, A.2
  • 243
    • 46249126098 scopus 로고    scopus 로고
    • Optical position detection to measure tyre carcass deflections
    • Tuononen, A.J., Optical position detection to measure tyre carcass deflections. Vehicle Syst. Dyn. 46 (2008), 471–481.
    • (2008) Vehicle Syst. Dyn. , vol.46 , pp. 471-481
    • Tuononen, A.J.1
  • 244
    • 84922918108 scopus 로고    scopus 로고
    • Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer
    • Matilainen, M., Tuononen, A., Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer. Mech. Syst. Signal Process. 52 (2015), 548–558.
    • (2015) Mech. Syst. Signal Process. , vol.52 , pp. 548-558
    • Matilainen, M.1    Tuononen, A.2
  • 245
    • 85043517481 scopus 로고    scopus 로고
    • An investigation of intelligent tires using multiscale modeling of cord-rubber composites
    • Behroozinia, P., Taheri, S., Mirzaeifar, R., An investigation of intelligent tires using multiscale modeling of cord-rubber composites. Mech. Base. Des. Struct. Mach., 2017, 1–16.
    • (2017) Mech. Base. Des. Struct. Mach. , pp. 1-16
    • Behroozinia, P.1    Taheri, S.2    Mirzaeifar, R.3
  • 246
    • 85166838334 scopus 로고    scopus 로고
    • Energy harvesting for tire pressure monitoring systems: design considerations. Proceedings of Power MEMS + MicroMEMS, Sendai, Japan:.
    • Roundy, S. (2008). Energy harvesting for tire pressure monitoring systems: design considerations. Proceedings of Power MEMS + MicroMEMS, Sendai, Japan: p. 9–12.
    • (2008) , pp. 9-12
    • Roundy, S.1
  • 247
    • 85166870143 scopus 로고    scopus 로고
    • Tire tread deformation sensor and energy harvester development for 'smart Tire'applications. in Proc. SPIE.
    • Moon, K.S., Liang, H., Yi, J., and Mika, B. (2007). Tire tread deformation sensor and energy harvester development for 'smart Tire'applications. in Proc. SPIE.
    • (2007)
    • Moon, K.S.1    Liang, H.2    Yi, J.3    Mika, B.4
  • 248
    • 85166826790 scopus 로고    scopus 로고
    • Battery-less piezoceramics mode energy harvesting for automobile TPMS. in ASIC. ASICON'09. IEEE 8th International Conference. 2009. IEEE.
    • Wu, L., Wang, Y., Jia, C., and Zhang, C. Battery-less piezoceramics mode energy harvesting for automobile TPMS. in ASIC, 2009. ASICON'09. IEEE 8th International Conference. 2009. IEEE.
    • (2009)
    • Wu, L.1    Wang, Y.2    Jia, C.3    Zhang, C.4
  • 249
    • 84880526885 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting for tyre pressure measurement applications
    • Mak, K.H., McWilliam, S., Popov, A.A., Piezoelectric energy harvesting for tyre pressure measurement applications. J. Automobile Eng. 227 (2013), 842–852.
    • (2013) J. Automobile Eng. , vol.227 , pp. 842-852
    • Mak, K.H.1    McWilliam, S.2    Popov, A.A.3
  • 250
    • 85166825080 scopus 로고    scopus 로고
    • van de Molengraft, J., Pop, V., Vullers, R.J.M., Renaud, M., and van Schaijk, R. (2011). Shock induced energy harvesting with a MEMS harvester for automotive applications. in Electron Devices Meeting (IEDM) IEEE International. IEEE.
    • Elfrink, R., Matova, S., de Nooijer, C., Jambunathan, M., Goedbloed, M., van de Molengraft, J., Pop, V., Vullers, R.J.M., Renaud, M., and van Schaijk, R. (2011). Shock induced energy harvesting with a MEMS harvester for automotive applications. in Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE.
    • (2011)
    • Elfrink, R.1    Matova, S.2    de Nooijer, C.3    Jambunathan, M.4    Goedbloed, M.5
  • 251
    • 79951682551 scopus 로고    scopus 로고
    • Vibration energy harvesting device based on asymmetric air-spaced cantilevers for tire pressure monitoring system
    • Zheng, Q., Tu, H., Agee, A., Xu, Y., Vibration energy harvesting device based on asymmetric air-spaced cantilevers for tire pressure monitoring system. Proceedings of Power MEMS, 2009, 403–406.
    • (2009) Proceedings of Power MEMS , pp. 403-406
    • Zheng, Q.1    Tu, H.2    Agee, A.3    Xu, Y.4
  • 252
    • 84991798447 scopus 로고    scopus 로고
    • Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance
    • Zhang, Y., Zheng, R., Shimono, K., Kaizuka, T., Nakano, K., Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Sensors, 16, 2016, 1727.
    • (2016) Sensors , vol.16 , pp. 1727
    • Zhang, Y.1    Zheng, R.2    Shimono, K.3    Kaizuka, T.4    Nakano, K.5
  • 253
    • 84867853882 scopus 로고    scopus 로고
    • Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires
    • Singh, K.B., Bedekar, V., Taheri, S., Priya, S., Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires. Mechatronics 22 (2012), 970–988.
    • (2012) Mechatronics , vol.22 , pp. 970-988
    • Singh, K.B.1    Bedekar, V.2    Taheri, S.3    Priya, S.4
  • 254
    • 85027947490 scopus 로고    scopus 로고
    • Broadening the frequency bandwidth of a tire-embedded piezoelectric-based energy harvesting system using coupled linear resonating structure
    • Sadeqi, S., Arzanpour, S., Hajikolaei, K.H., Broadening the frequency bandwidth of a tire-embedded piezoelectric-based energy harvesting system using coupled linear resonating structure. IEEE/ASME Trans. Mechatronics 20 (2015), 2085–2094.
    • (2015) IEEE/ASME Trans. Mechatronics , vol.20 , pp. 2085-2094
    • Sadeqi, S.1    Arzanpour, S.2    Hajikolaei, K.H.3
  • 255
    • 85011843840 scopus 로고    scopus 로고
    • Practical design of an energy harvester considering wheel rotation for powering intelligent tire systems
    • Zhu, B., Han, J., Zhao, J., Deng, W., Practical design of an energy harvester considering wheel rotation for powering intelligent tire systems. J. Electron. Mater. 46 (2017), 2483–2493.
    • (2017) J. Electron. Mater. , vol.46 , pp. 2483-2493
    • Zhu, B.1    Han, J.2    Zhao, J.3    Deng, W.4
  • 256
    • 55349089888 scopus 로고    scopus 로고
    • Enhanced vibrational energy harvesting using nonlinear stochastic resonance
    • McInnes, C., Gorman, D., Cartmell, M.P., Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318 (2008), 655–662.
    • (2008) J. Sound Vib. , vol.318 , pp. 655-662
    • McInnes, C.1    Gorman, D.2    Cartmell, M.P.3
  • 257
    • 84898825794 scopus 로고    scopus 로고
    • An application of stochastic resonance for energy harvesting in a bistable vibrating system
    • Zheng, R., Nakano, K., Hu, H., Su, D., Cartmell, M.P., An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound Vib. 333 (2014), 2568–2587.
    • (2014) J. Sound Vib. , vol.333 , pp. 2568-2587
    • Zheng, R.1    Nakano, K.2    Hu, H.3    Su, D.4    Cartmell, M.P.5
  • 259
    • 85166870559 scopus 로고    scopus 로고
    • A new approach of a piezoelectric vibration-based power generator to supply next generation tire sensor systems. in Sensors IEEE. IEEE., 2007
    • Keck, M. (2007). A new approach of a piezoelectric vibration-based power generator to supply next generation tire sensor systems. in Sensors, 2007 IEEE. IEEE.
    • (2007)
    • Keck, M.1
  • 260
    • 85166869511 scopus 로고    scopus 로고
    • -W. (2016). Energy harvesting system for intelligent tyre sensors. in Intelligent Vehicles Symposium (IV) IEEE. IEEE.
    • Jousimaa, O.J., Parmar, M., and Lee, D.-W. (2016). Energy harvesting system for intelligent tyre sensors. in Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE.
    • (2016)
    • Jousimaa, O.J.1    Parmar, M.2    Lee, D.3
  • 261
    • 84901430077 scopus 로고    scopus 로고
    • A seesaw-structured energy harvester with superwide bandwidth for TPMS application
    • Wu, X., Parmar, M., Lee, D.-W., A seesaw-structured energy harvester with superwide bandwidth for TPMS application. IEEE/ASME Trans. Mechatronics 19 (2014), 1514–1522.
    • (2014) IEEE/ASME Trans. Mechatronics , vol.19 , pp. 1514-1522
    • Wu, X.1    Parmar, M.2    Lee, D.-W.3
  • 262
    • 85166873014 scopus 로고    scopus 로고
    • Harvesting energy from vehicle wheels. in Solid-State Sensors, Actuators and Microsystems Conference. TRANSDUCERS 2009. IEEE., 2009
    • Manla, G., White, N., and Tudor, J. (2009). Harvesting energy from vehicle wheels. in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. IEEE.
    • (2009)
    • Manla, G.1    White, N.2    Tudor, J.3
  • 263
    • 85166870006 scopus 로고    scopus 로고
    • Non-contact frequency-up-conversion energy harvester for durable & broad-band automotive TPMS application. in Micro Electro Mechanical Systems (MEMS) IEEE 25th International Conference. 2012. IEEE.
    • Tang, Q., Xia, X., and Li, X. Non-contact frequency-up-conversion energy harvester for durable & broad-band automotive TPMS application. in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference. 2012. IEEE.
    • (2012)
    • Tang, Q.1    Xia, X.2    Li, X.3
  • 264
    • 84907215852 scopus 로고    scopus 로고
    • Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
    • Roundy, S., Tola, J., Energy harvester for rotating environments using offset pendulum and nonlinear dynamics. Smart Mater. Struct., 23, 2014, 105004.
    • (2014) Smart Mater. Struct. , vol.23 , pp. 105004
    • Roundy, S.1    Tola, J.2
  • 265
    • 84864586173 scopus 로고    scopus 로고
    • Battery-and wire-less tire pressure measurement systems (TPMS) sensor
    • Makki, N., Pop-Iliev, R., Battery-and wire-less tire pressure measurement systems (TPMS) sensor. Microsystem Tech. 18 (2012), 1201–1212.
    • (2012) Microsystem Tech. , vol.18 , pp. 1201-1212
    • Makki, N.1    Pop-Iliev, R.2
  • 266
    • 79960538939 scopus 로고    scopus 로고
    • Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor
    • Makki, N., Pop-Iliev, R., Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor. Proc. SPIE, 2011, 10.1117/12.887112.
    • (2011) Proc. SPIE
    • Makki, N.1    Pop-Iliev, R.2
  • 267
    • 85166815922 scopus 로고    scopus 로고
    • Pneumatic tire-based piezoelectric power generation. in Proc. SPIE Vol
    • Makki, N., and Pop-Iliev, R. Pneumatic tire-based piezoelectric power generation. in Proc. SPIE Vol. 2011.
    • (2011)
    • Makki, N.1    Pop-Iliev, R.2
  • 268
    • 84555218425 scopus 로고    scopus 로고
    • Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites
    • van den Ende, D.A., Van de Wiel, H., Groen, W., Van der Zwaag, S., Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites. Smart Mater. Struct., 21, 2011, 015011.
    • (2011) Smart Mater. Struct. , vol.21 , pp. 015011
    • van den Ende, D.A.1    Van de Wiel, H.2    Groen, W.3    Van der Zwaag, S.4
  • 269
    • 3042787287 scopus 로고    scopus 로고
    • Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion
    • University of California
    • Roundy, S.J., Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. 2003, University of California.
    • (2003)
    • Roundy, S.J.1
  • 270
    • 0031678155 scopus 로고    scopus 로고
    • Dielectric properties of dielectrophoretically assembled particulate-polymer composites
    • Bowen, C., Newnham, R., Randall, C., Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 13 (1998), 205–210.
    • (1998) J. Mater. Res. , vol.13 , pp. 205-210
    • Bowen, C.1    Newnham, R.2    Randall, C.3
  • 271
    • 84888156934 scopus 로고    scopus 로고
    • Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires
    • Lee, J., Choi, B., Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. Energ. Convers. Manag. 78 (2014), 32–38.
    • (2014) Energ. Convers. Manag. , vol.78 , pp. 32-38
    • Lee, J.1    Choi, B.2
  • 273
    • 77952547401 scopus 로고    scopus 로고
    • Acoustic emission monitoring of bridges: review and case studies
    • Nair, A., Cai, C., Acoustic emission monitoring of bridges: review and case studies. Eng. Struct. 32 (2010), 1704–1714.
    • (2010) Eng. Struct. , vol.32 , pp. 1704-1714
    • Nair, A.1    Cai, C.2
  • 274
    • 85166816123 scopus 로고    scopus 로고
    • A survey of applications of wireless sensors and wireless sensor networks. in Intelligent Control. Proceedings of the 2005 IEEE International Symposium on, Mediterranean Conference on Control and Automation. IEEE., 2005
    • Arampatzis, T., Lygeros, J, and Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. in Intelligent Control, 2005. Proceedings of the 2005 IEEE International Symposium on, Mediterranean Conference on Control and Automation. IEEE.
    • (2005)
    • Arampatzis, T.1    Lygeros, J.2    Manesis, S.3
  • 275
    • 85166871628 scopus 로고    scopus 로고
    • The smart home concept: our immediate future. in E-Learning in Industrial Electronics 1ST IEEE International Conference on. 2006. IEEE.
    • Ricquebourg, V., Menga, D., Durand, D., Marhic, B., Delahoche, L., and Loge, C. The smart home concept: our immediate future. in E-Learning in Industrial Electronics, 2006 1ST IEEE International Conference on. 2006. IEEE.
    • (2006)
    • Ricquebourg, V.1    Menga, D.2    Durand, D.3    Marhic, B.4    Delahoche, L.5    Loge, C.6
  • 276
    • 84947291002 scopus 로고    scopus 로고
    • Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors
    • Kaur, N., Bhalla, S., Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors. J. Energy Eng., 141, 2014, D4014001.
    • (2014) J. Energy Eng. , vol.141 , pp. D4014001
    • Kaur, N.1    Bhalla, S.2
  • 278
    • 84891378046 scopus 로고    scopus 로고
    • Review of the application of energy harvesting in buildings
    • Matiko, J., Grabham, N., Beeby, S., Tudor, M., Review of the application of energy harvesting in buildings. Meas. Sci. Tech., 25, 2013, 012002.
    • (2013) Meas. Sci. Tech. , vol.25 , pp. 012002
    • Matiko, J.1    Grabham, N.2    Beeby, S.3    Tudor, M.4
  • 279
    • 0042136530 scopus 로고
    • Dynamic characteristics of five tall buildings during strong and low-amplitude motions
    • Çlelebi, M., Phan, L., Marshall, R., Dynamic characteristics of five tall buildings during strong and low-amplitude motions. Struct. Des. Tall Spec. 2 (1993), 1–15.
    • (1993) Struct. Des. Tall Spec. , vol.2 , pp. 1-15
    • Çlelebi, M.1    Phan, L.2    Marshall, R.3
  • 280
    • 84884576458 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting from traffic-induced bridge vibrations
    • Peigney, M., Siegert, D., Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct., 22, 2013, 095019.
    • (2013) Smart Mater. Struct. , vol.22 , pp. 095019
    • Peigney, M.1    Siegert, D.2
  • 281
    • 84956891612 scopus 로고    scopus 로고
    • Review of energy harvesters utilizing bridge vibrations
    • Khan, F.U., Ahmad, I., Review of energy harvesters utilizing bridge vibrations. Shock Vib., 2016, 10.1155/2016/1340402.
    • (2016) Shock Vib.
    • Khan, F.U.1    Ahmad, I.2
  • 282
    • 85166816668 scopus 로고    scopus 로고
    • Energy harvesting from building seismic isolation with multi-mode resonant shunt circuits. in ASME 2014 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers).
    • Cao, M., and Zuo, L. (2014). Energy harvesting from building seismic isolation with multi-mode resonant shunt circuits. in ASME 2014 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers).
    • (2014)
    • Cao, M.1    Zuo, L.2
  • 283
    • 84990026455 scopus 로고    scopus 로고
    • Electromagnetic energy harvesting from structural vibrations during earthquakes
    • Shen, W., Zhu, S., Zhu, H., Xu, Y., Electromagnetic energy harvesting from structural vibrations during earthquakes. Smart Struct. Syst. 18 (2016), 449–470.
    • (2016) Smart Struct. Syst. , vol.18 , pp. 449-470
    • Shen, W.1    Zhu, S.2    Zhu, H.3    Xu, Y.4
  • 284
    • 84873192221 scopus 로고    scopus 로고
    • Novel miniature airflow energy harvester for wireless sensing applications in buildings
    • Zhu, D., Beeby, S.P., Tudor, M.J., White, N.M., Harris, N.R., Novel miniature airflow energy harvester for wireless sensing applications in buildings. IEEE Sensors J. 13 (2013), 691–700.
    • (2013) IEEE Sensors J. , vol.13 , pp. 691-700
    • Zhu, D.1    Beeby, S.P.2    Tudor, M.J.3    White, N.M.4    Harris, N.R.5
  • 285
    • 85166805628 scopus 로고    scopus 로고
    • I. Ahmad. Vibration-based electromagnetic type energy harvester for bridge monitoring sensor application. in Emerging Technologies (ICET) International Conference. 2014. IEEE.
    • Khan, F.U. and I. Ahmad. Vibration-based electromagnetic type energy harvester for bridge monitoring sensor application. in Emerging Technologies (ICET), 2014 International Conference. 2014. IEEE.
    • (2014)
    • Khan, F.U.1
  • 286
    • 85166821862 scopus 로고    scopus 로고
    • Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. in SENSORS IEEE. ∖, 2016
    • Orfei, F., Mezzetti, C.B., and Cottone, F. (2016). Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. in SENSORS, 2016 IEEE. ∖.
    • (2016)
    • Orfei, F.1    Mezzetti, C.B.2    Cottone, F.3
  • 287
    • 84952631191 scopus 로고    scopus 로고
    • Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems
    • Takeya, K., Sasaki, E., Kobayashi, Y., Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems. J. Sound Vib. 361 (2016), 50–65.
    • (2016) J. Sound Vib. , vol.361 , pp. 50-65
    • Takeya, K.1    Sasaki, E.2    Kobayashi, Y.3
  • 288
    • 85166871528 scopus 로고    scopus 로고
    • Developing innovative energy harvesting approaches for infrastructure health monitoring systems. in Proceedings of the 37th Design Automation Conference, Parts A and B.
    • McEvoy, T., Dierks, E., Weaver, J., Inamdar, S., Zimowski, K., Wood, K.L., Crawford, R.H., and Jensen, D. (2011). Developing innovative energy harvesting approaches for infrastructure health monitoring systems. in Proceedings of the 37th Design Automation Conference, Parts A and B.
    • (2011)
    • McEvoy, T.1    Dierks, E.2    Weaver, J.3    Inamdar, S.4    Zimowski, K.5    Wood, K.L.6    Crawford, R.H.7    Jensen, D.8
  • 289
    • 79961209980 scopus 로고    scopus 로고
    • Micro power generator for harvesting low-frequency and nonperiodic vibrations
    • Galchev, T., Kim, H., Najafi, K., Micro power generator for harvesting low-frequency and nonperiodic vibrations. J. Microelectromech. Syst. 20 (2011), 852–866.
    • (2011) J. Microelectromech. Syst. , vol.20 , pp. 852-866
    • Galchev, T.1    Kim, H.2    Najafi, K.3
  • 290
    • 85166855995 scopus 로고    scopus 로고
    • L. Zuo. (2011). Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. in American Control Conference (ACC). IEEE.
    • Tang, X. and L. Zuo. (2011). Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. in American Control Conference (ACC), 2011. IEEE.
    • (2011)
    • Tang, X.1
  • 291
    • 80053591104 scopus 로고    scopus 로고
    • Harvesting traffic-induced vibrations for structural health monitoring of bridges
    • Galchev, T., McCullagh, J., Peterson, R., Najafi, K., Harvesting traffic-induced vibrations for structural health monitoring of bridges. J. Micromech. Microeng., 21, 2011, 104005.
    • (2011) J. Micromech. Microeng. , vol.21 , pp. 104005
    • Galchev, T.1    McCullagh, J.2    Peterson, R.3    Najafi, K.4
  • 293
    • 79960584003 scopus 로고    scopus 로고
    • An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node
    • Jung, H.-J., Kim, I.-H., Jang, S.-J., An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node. Smart Mater. Struct., 20, 2011, 075001.
    • (2011) Smart Mater. Struct. , vol.20 , pp. 075001
    • Jung, H.-J.1    Kim, I.-H.2    Jang, S.-J.3
  • 294
    • 83455235342 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations
    • Erturk, A., Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations. J. Intell. Mater. Syst. Struct. 22 (2011), 1959–1973.
    • (2011) J. Intell. Mater. Syst. Struct. , vol.22 , pp. 1959-1973
    • Erturk, A.1
  • 296
    • 84905923132 scopus 로고    scopus 로고
    • Piezoelectric-based energy harvesting in bridge systems
    • Zhang, Y., Cai, S.C., Deng, L., Piezoelectric-based energy harvesting in bridge systems. J. Intell. Mater. Syst. Struct. 25 (2014), 1414–1428.
    • (2014) J. Intell. Mater. Syst. Struct. , vol.25 , pp. 1414-1428
    • Zhang, Y.1    Cai, S.C.2    Deng, L.3
  • 297
    • 84882376468 scopus 로고    scopus 로고
    • Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass
    • Xie, X., Wu, N., Yuen, K.V., Wang, Q., Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass. Int. J. Eng. Sci. 72 (2013), 98–106.
    • (2013) Int. J. Eng. Sci. , vol.72 , pp. 98-106
    • Xie, X.1    Wu, N.2    Yuen, K.V.3    Wang, Q.4
  • 300
    • 84990973641 scopus 로고    scopus 로고
    • Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles
    • Karimi, M., Karimi, A., Tikani, R., Ziaei-Rad, S., Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles. Int. J. Mech. Sci. 119 (2016), 1–11.
    • (2016) Int. J. Mech. Sci. , vol.119 , pp. 1-11
    • Karimi, M.1    Karimi, A.2    Tikani, R.3    Ziaei-Rad, S.4
  • 301
    • 85045545369 scopus 로고    scopus 로고
    • Multiresonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications
    • Bhaskaran, P.R., Rathnam, J.D., Koilmani, S., Subramanian, K., Multiresonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications. Smart Mater. Res., 2017, 2017, 10.1155/2017/6084309.
    • (2017) Smart Mater. Res. , vol.2017
    • Bhaskaran, P.R.1    Rathnam, J.D.2    Koilmani, S.3    Subramanian, K.4
  • 302
    • 84983616346 scopus 로고    scopus 로고
    • Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge
    • Maruccio, C., Quaranta, G., DeLorenzis, L., Monti, G., Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge. Smart Mater. Struct., 25, 2016, 085040.
    • (2016) Smart Mater. Struct. , vol.25 , pp. 085040
    • Maruccio, C.1    Quaranta, G.2    DeLorenzis, L.3    Monti, G.4
  • 303
    • 70350643627 scopus 로고    scopus 로고
    • Robust segment-type energy harvester and its application to a wireless sensor
    • Lee, S., Youn, B.D., Jung, B.C., Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater. Struct., 18, 2009, 095021.
    • (2009) Smart Mater. Struct. , vol.18 , pp. 095021
    • Lee, S.1    Youn, B.D.2    Jung, B.C.3
  • 304
    • 84870907415 scopus 로고    scopus 로고
    • Tunable energy harvesting from ambient vibrations in civil structures
    • Rhimi, M., Lajnef, N., Tunable energy harvesting from ambient vibrations in civil structures. J. Energy Eng. 138 (2012), 185–193.
    • (2012) J. Energy Eng. , vol.138 , pp. 185-193
    • Rhimi, M.1    Lajnef, N.2
  • 305
    • 33748854828 scopus 로고    scopus 로고
    • Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload
    • Leland, E.S., Wright, P.K., Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct., 15, 2006, 1413.
    • (2006) Smart Mater. Struct. , vol.15 , pp. 1413
    • Leland, E.S.1    Wright, P.K.2
  • 306
    • 79955884815 scopus 로고    scopus 로고
    • Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system
    • Kim, S.-H., Ahn, J.-H., Chung, H.-M., Kang, H.-W., Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system. Sensor. Actuator. Phys. 167 (2011), 468–483.
    • (2011) Sensor. Actuator. Phys. , vol.167 , pp. 468-483
    • Kim, S.-H.1    Ahn, J.-H.2    Chung, H.-M.3    Kang, H.-W.4
  • 307
    • 84954469397 scopus 로고    scopus 로고
    • Energy harvesting from high-rise buildings by a piezoelectric harvester device
    • Xie, X., Wang, Q., Wang, S., Energy harvesting from high-rise buildings by a piezoelectric harvester device. Energy 93 (2015), 1345–1352.
    • (2015) Energy , vol.93 , pp. 1345-1352
    • Xie, X.1    Wang, Q.2    Wang, S.3
  • 308
    • 84961125349 scopus 로고    scopus 로고
    • Design of a piezoelectric harvester fixed under the roof of a high-rise building
    • Xie, X., Wang, Q., Design of a piezoelectric harvester fixed under the roof of a high-rise building. Eng. Struct. 117 (2016), 1–9.
    • (2016) Eng. Struct. , vol.117 , pp. 1-9
    • Xie, X.1    Wang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.