-
1
-
-
84890528611
-
Piezoelectric and ferroelectric materials and structures for energy harvesting applications
-
Bowen, C., Kim, H., Weaver, P., Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7 (2014), 25–44.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 25-44
-
-
Bowen, C.1
Kim, H.2
Weaver, P.3
Dunn, S.4
-
2
-
-
84964596782
-
Piezoelectric thin films: an integrated review of transducers and energy harvesting
-
Khan, A., Abas, Z., Kim, H.S., Oh, I.-K., Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct., 25, 2016, 053002.
-
(2016)
Smart Mater. Struct.
, vol.25
, pp. 053002
-
-
Khan, A.1
Abas, Z.2
Kim, H.S.3
Oh, I.-K.4
-
3
-
-
84894283149
-
A review of piezoelectric polymers as functional materials for electromechanical transducers
-
Ramadan, K.S., Sameoto, D., Evoy, S., A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct., 23, 2014, 033001.
-
(2014)
Smart Mater. Struct.
, vol.23
, pp. 033001
-
-
Ramadan, K.S.1
Sameoto, D.2
Evoy, S.3
-
4
-
-
84866335762
-
From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures
-
Wang, Z.L., From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures. MRS Bull. 37 (2012), 814–827.
-
(2012)
MRS Bull.
, vol.37
, pp. 814-827
-
-
Wang, Z.L.1
-
5
-
-
84872464321
-
Progress in nanogenerators for portable electronics
-
Wang, Z.L., Zhu, G., Yang, Y., Wang, S., Pan, C., Progress in nanogenerators for portable electronics. Mater. Today 15 (2012), 532–543.
-
(2012)
Mater. Today
, vol.15
, pp. 532-543
-
-
Wang, Z.L.1
Zhu, G.2
Yang, Y.3
Wang, S.4
Pan, C.5
-
6
-
-
56449115420
-
Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
-
Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct., 17, 2008, 043001.
-
(2008)
Smart Mater. Struct.
, vol.17
, pp. 043001
-
-
Cook-Chennault, K.A.1
Thambi, N.2
Sastry, A.M.3
-
7
-
-
84942311492
-
Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters
-
Briscoe, J., Dunn, S., Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano Energy 14 (2015), 15–29.
-
(2015)
Nano Energy
, vol.14
, pp. 15-29
-
-
Briscoe, J.1
Dunn, S.2
-
8
-
-
84869075298
-
Piezoelectric MEMS for energy harvesting
-
Kim, S.-G., Priya, S., Kanno, I., Piezoelectric MEMS for energy harvesting. MRS Bull. 37 (2012), 1039–1050.
-
(2012)
MRS Bull.
, vol.37
, pp. 1039-1050
-
-
Kim, S.-G.1
Priya, S.2
Kanno, I.3
-
9
-
-
84869407386
-
Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems
-
Wang, Z.L., Wu, W., Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51 (2012), 11700–11721.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 11700-11721
-
-
Wang, Z.L.1
Wu, W.2
-
10
-
-
84870435444
-
Energy harvesting: an integrated view of materials, devices and applications
-
Radousky, H.B., Liang, H., Energy harvesting: an integrated view of materials, devices and applications. Nanotechnology, 23, 2012, 502001.
-
(2012)
Nanotechnology
, vol.23
, pp. 502001
-
-
Radousky, H.B.1
Liang, H.2
-
11
-
-
84953792301
-
Flexible nanogenerators for energy harvesting and self-powered electronics
-
Fan, F.R., Tang, W., Wang, Z.L., Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28 (2016), 4283–4305.
-
(2016)
Adv. Mater.
, vol.28
, pp. 4283-4305
-
-
Fan, F.R.1
Tang, W.2
Wang, Z.L.3
-
12
-
-
84899825755
-
On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion
-
Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D., On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev., 66, 2014, 040801.
-
(2014)
Appl. Mech. Rev.
, vol.66
, pp. 040801
-
-
Daqaq, M.F.1
Masana, R.2
Erturk, A.3
Quinn, D.D.4
-
13
-
-
84873344256
-
A review of the recent research on vibration energy harvesting via bistable systems
-
Harne, R.L., Wang, K.W., A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct., 22, 2013, 023001.
-
(2013)
Smart Mater. Struct.
, vol.22
, pp. 023001
-
-
Harne, R.L.1
Wang, K.W.2
-
14
-
-
78650924737
-
Toward broadband vibration-based energy harvesting
-
Tang, L., Yang, Y., Soh, C.K., Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21 (2010), 1867–1897.
-
(2010)
J. Intell. Mater. Syst. Struct.
, vol.21
, pp. 1867-1897
-
-
Tang, L.1
Yang, Y.2
Soh, C.K.3
-
15
-
-
84859586936
-
Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation
-
Guyomar, D., Lallart, M., Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines 2 (2011), 274–294.
-
(2011)
Micromachines
, vol.2
, pp. 274-294
-
-
Guyomar, D.1
Lallart, M.2
-
16
-
-
84862128298
-
Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications
-
Dicken, J., Mitcheson, P.D., Stoianov, I., Yeatman, E.M., Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans. Power Electron. 27 (2012), 4514–4529.
-
(2012)
IEEE Trans. Power Electron.
, vol.27
, pp. 4514-4529
-
-
Dicken, J.1
Mitcheson, P.D.2
Stoianov, I.3
Yeatman, E.M.4
-
17
-
-
84855645427
-
Review of power conditioning for kinetic energy harvesting systems
-
Szarka, G.D., Stark, B.H., Burrow, S.G., Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27 (2012), 803–815.
-
(2012)
IEEE Trans. Power Electron.
, vol.27
, pp. 803-815
-
-
Szarka, G.D.1
Stark, B.H.2
Burrow, S.G.3
-
18
-
-
85021116625
-
Energy harvesting from the animal/human body for self-powered electronics
-
Dagdeviren, C., Li, Z., Wang, Z.L., Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 19 (2017), 85–108.
-
(2017)
Annu. Rev. Biomed. Eng.
, vol.19
, pp. 85-108
-
-
Dagdeviren, C.1
Li, Z.2
Wang, Z.L.3
-
19
-
-
51649122440
-
-
Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9):.
-
Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., and Green, T.C. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9): p. 1457–1486.
-
(2008)
, pp. 1457-1486
-
-
Mitcheson, P.D.1
Yeatman, E.M.2
Rao, G.K.3
Holmes, A.S.4
Green, T.C.5
-
20
-
-
84945206361
-
A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms
-
Siddique, A.R.M., Mahmud, S., Van Heyst, B., A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energ. Convers. Manag. 106 (2015), 728–747.
-
(2015)
Energ. Convers. Manag.
, vol.106
, pp. 728-747
-
-
Siddique, A.R.M.1
Mahmud, S.2
Van Heyst, B.3
-
21
-
-
44649151668
-
Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion
-
Hudak, N.S., Amatucci, G.G., Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Physiol., 103, 2008, 5.
-
(2008)
J. Appl. Physiol.
, vol.103
, pp. 5
-
-
Hudak, N.S.1
Amatucci, G.G.2
-
22
-
-
84885124731
-
Review on electrodynamic energy harvesters—a classification approach
-
Cepnik, C., Lausecker, R., Wallrabe, U., Review on electrodynamic energy harvesters—a classification approach. Micromachines 4 (2013), 168–196.
-
(2013)
Micromachines
, vol.4
, pp. 168-196
-
-
Cepnik, C.1
Lausecker, R.2
Wallrabe, U.3
-
23
-
-
84954175944
-
Micro-scale energy harvesting devices: review of methodological performances in the last decade
-
Selvan, K.V., Ali, M.S.M., Micro-scale energy harvesting devices: review of methodological performances in the last decade. Renew. Sustain. Energ. Rev. 54 (2016), 1035–1047.
-
(2016)
Renew. Sustain. Energ. Rev.
, vol.54
, pp. 1035-1047
-
-
Selvan, K.V.1
Ali, M.S.M.2
-
24
-
-
84948437290
-
Energy harvesting in wireless sensor networks: a comprehensive review
-
Shaikh, F.K., Zeadally, S., Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energ. Rev. 55 (2016), 1041–1054.
-
(2016)
Renew. Sustain. Energ. Rev.
, vol.55
, pp. 1041-1054
-
-
Shaikh, F.K.1
Zeadally, S.2
-
25
-
-
84896455415
-
Piezoelectric energy harvesting solutions
-
Caliò, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., Oddo, C.M., Piezoelectric energy harvesting solutions. Sensors (Basel) 14 (2014), 4755–4790.
-
(2014)
Sensors (Basel)
, vol.14
, pp. 4755-4790
-
-
Caliò, R.1
Rongala, U.B.2
Camboni, D.3
Milazzo, M.4
Stefanini, C.5
de Petris, G.6
Oddo, C.M.7
-
26
-
-
84903106739
-
The development of piezoelectric materials and the new perspective
-
K. Uchino Woodhead Publishing
-
Uchino, K., The development of piezoelectric materials and the new perspective. Uchino, K., (eds.) Advanced Piezoelectric Materials, 2010, Woodhead Publishing, 1–43.
-
(2010)
Advanced Piezoelectric Materials
, pp. 1-43
-
-
Uchino, K.1
-
28
-
-
84973644322
-
Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting
-
Yang, Z., Zu, J., Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting. Energ. Convers. Manag. 122 (2016), 321–329.
-
(2016)
Energ. Convers. Manag.
, vol.122
, pp. 321-329
-
-
Yang, Z.1
Zu, J.2
-
29
-
-
0004010529
-
Ferroelectric Materials and Their Applications
-
North-Holland
-
Yuhuan, X., Ferroelectric Materials and Their Applications. 1991, North-Holland.
-
(1991)
-
-
Yuhuan, X.1
-
30
-
-
84879924594
-
Bistable vibration energy harvesters: a review
-
Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L., Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24 (2013), 1303–1312.
-
(2013)
J. Intell. Mater. Syst. Struct.
, vol.24
, pp. 1303-1312
-
-
Pellegrini, S.P.1
Tolou, N.2
Schenk, M.3
Herder, J.L.4
-
31
-
-
85013176797
-
A comprehensive review on vibration energy harvesting: Modelling and realization
-
Wei, C., Jing, X., A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energ. Rev. 74 (2017), 1–18.
-
(2017)
Renew. Sustain. Energ. Rev.
, vol.74
, pp. 1-18
-
-
Wei, C.1
Jing, X.2
-
32
-
-
0039065101
-
Stochastic resonance
-
Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., Stochastic resonance. Rev. Mod. Phys., 70, 1998, 223.
-
(1998)
Rev. Mod. Phys.
, vol.70
, pp. 223
-
-
Gammaitoni, L.1
Hänggi, P.2
Jung, P.3
Marchesoni, F.4
-
33
-
-
61449128189
-
Nonlinear energy harvesting
-
Cottone, F., Vocca, H., Gammaitoni, L., Nonlinear energy harvesting. Phys. Rev. Lett., 102, 2009, 080601.
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 080601
-
-
Cottone, F.1
Vocca, H.2
Gammaitoni, L.3
-
34
-
-
67649482443
-
A piezomagnetoelastic structure for broadband vibration energy harvesting
-
Erturk, A., Hoffmann, J., Inman, D.J., A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett., 94, 2009, 254102.
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 254102
-
-
Erturk, A.1
Hoffmann, J.2
Inman, D.J.3
-
35
-
-
84877278091
-
Enhanced broadband piezoelectric energy harvesting using rotatable magnets
-
Zhou, S., Cao, J., Erturk, A., Lin, J., Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett., 102, 2013, 173901.
-
(2013)
Appl. Phys. Lett.
, vol.102
, pp. 173901
-
-
Zhou, S.1
Cao, J.2
Erturk, A.3
Lin, J.4
-
36
-
-
77649273332
-
Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator
-
Stanton, S.C., McGehee, C.C., Mann, B.P., Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. Nonlinear Phenom. 239 (2010), 640–653.
-
(2010)
Phys. Nonlinear Phenom.
, vol.239
, pp. 640-653
-
-
Stanton, S.C.1
McGehee, C.C.2
Mann, B.P.3
-
37
-
-
80053506652
-
Experimental Duffing oscillator for broadband piezoelectric energy harvesting
-
Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B., Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct., 20, 2011, 102001.
-
(2011)
Smart Mater. Struct.
, vol.20
, pp. 102001
-
-
Sebald, G.1
Kuwano, H.2
Guyomar, D.3
Ducharne, B.4
-
38
-
-
84865848454
-
A nonlinear piezoelectric energy harvester with magnetic oscillator
-
Tang, L., Yang, Y., A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett., 101, 2012, 094102.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 094102
-
-
Tang, L.1
Yang, Y.2
-
39
-
-
84907798524
-
High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism
-
Yang, Z., Zu, J., High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energ. Convers. Manag. 88 (2014), 829–833.
-
(2014)
Energ. Convers. Manag.
, vol.88
, pp. 829-833
-
-
Yang, Z.1
Zu, J.2
-
40
-
-
84921803798
-
Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations
-
Yang, Z., Zhu, Y., Zu, J., Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Mater. Struct., 24, 2015, 025028.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 025028
-
-
Yang, Z.1
Zhu, Y.2
Zu, J.3
-
41
-
-
70350738294
-
Reversible hysteresis for broadband magnetopiezoelastic energy harvesting
-
Stanton, S.C., McGehee, C.C., Mann, B.P., Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett., 95, 2009, 174103.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 174103
-
-
Stanton, S.C.1
McGehee, C.C.2
Mann, B.P.3
-
42
-
-
84978664423
-
Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits
-
Yang, Z., Zu, J., Xu, Z., Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits. IEEE/ASME Trans. Mechatronics 21 (2016), 2174–2184.
-
(2016)
IEEE/ASME Trans. Mechatronics
, vol.21
, pp. 2174-2184
-
-
Yang, Z.1
Zu, J.2
Xu, Z.3
-
43
-
-
79952438592
-
Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling
-
Erturk, A., Inman, D., Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330 (2011), 2339–2353.
-
(2011)
J. Sound Vib.
, vol.330
, pp. 2339-2353
-
-
Erturk, A.1
Inman, D.2
-
44
-
-
84905638500
-
Broadband tristable energy harvester: modeling and experiment verification
-
Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z., Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133 (2014), 33–39.
-
(2014)
Appl. Energy
, vol.133
, pp. 33-39
-
-
Zhou, S.1
Cao, J.2
Inman, D.J.3
Lin, J.4
Liu, S.5
Wang, Z.6
-
45
-
-
84907494517
-
Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting
-
Zhou, S., Cao, J., Lin, J., Wang, Z., Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys., 67, 2014, 10.1051/epjap/2014140190.
-
(2014)
Eur. Phys. J. Appl. Phys.
, vol.67
-
-
Zhou, S.1
Cao, J.2
Lin, J.3
Wang, Z.4
-
46
-
-
84907524132
-
A multi-stable energy harvester: dynamic modeling and bifurcation analysis
-
Kim, P., Seok, J., A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333 (2014), 5525–5547.
-
(2014)
J. Sound Vib.
, vol.333
, pp. 5525-5547
-
-
Kim, P.1
Seok, J.2
-
47
-
-
84940211917
-
Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester
-
Kim, P., Seok, J., Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theor. 94 (2015), 41–63.
-
(2015)
Mech. Mach. Theor.
, vol.94
, pp. 41-63
-
-
Kim, P.1
Seok, J.2
-
48
-
-
84982854536
-
Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters
-
Zhou, S., Cao, J., Lin, J., Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86 (2016), 1599–1611.
-
(2016)
Nonlinear Dyn.
, vol.86
, pp. 1599-1611
-
-
Zhou, S.1
Cao, J.2
Lin, J.3
-
49
-
-
84860354823
-
Harmonic balance analysis of the bistable piezoelectric inertial generator
-
Stanton, S.C., Owens, B.A., Mann, B.P., Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331 (2012), 3617–3627.
-
(2012)
J. Sound Vib.
, vol.331
, pp. 3617-3627
-
-
Stanton, S.C.1
Owens, B.A.2
Mann, B.P.3
-
50
-
-
84887829085
-
On the fundamental and superharmonic effects in bistable energy harvesting
-
Harne, R., Wang, K., On the fundamental and superharmonic effects in bistable energy harvesting. J. Intell. Mater. Syst. Struct. 25 (2014), 937–950.
-
(2014)
J. Intell. Mater. Syst. Struct.
, vol.25
, pp. 937-950
-
-
Harne, R.1
Wang, K.2
-
51
-
-
84857891328
-
Energy harvesting in the super-harmonic frequency region of a twin-well oscillator
-
Masana, R., Daqaq, M., Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Physiol., 111, 2012, 044501.
-
(2012)
J. Appl. Physiol.
, vol.111
, pp. 044501
-
-
Masana, R.1
Daqaq, M.2
-
52
-
-
84979468143
-
Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement
-
Zhou, S., Cao, J., Inman, D.J., Lin, J., Li, D., Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373 (2016), 223–235.
-
(2016)
J. Sound Vib.
, vol.373
, pp. 223-235
-
-
Zhou, S.1
Cao, J.2
Inman, D.J.3
Lin, J.4
Li, D.5
-
53
-
-
84992724029
-
Characterizing the effective bandwidth of tri-stable energy harvesters
-
Panyam, M., Daqaq, M.F., Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 386 (2017), 336–358.
-
(2017)
J. Sound Vib.
, vol.386
, pp. 336-358
-
-
Panyam, M.1
Daqaq, M.F.2
-
54
-
-
84929522706
-
Chaos in the fractionally damped broadband piezoelectric energy generator
-
Cao, J., Zhou, S., Inman, D.J., Chen, Y., Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80 (2015), 1705–1719.
-
(2015)
Nonlinear Dyn.
, vol.80
, pp. 1705-1719
-
-
Cao, J.1
Zhou, S.2
Inman, D.J.3
Chen, Y.4
-
55
-
-
84856464361
-
Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments
-
Stanton, S.C., Mann, B.P., Owens, B.A., Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments. Phys. Nonlinear Phenom. 241 (2012), 711–720.
-
(2012)
Phys. Nonlinear Phenom.
, vol.241
, pp. 711-720
-
-
Stanton, S.C.1
Mann, B.P.2
Owens, B.A.3
-
56
-
-
84923684223
-
Analysis of tristable energy harvesting system having fractional order viscoelastic material
-
Oumbé Tékam, G., Kitio Kwuimy, C., Woafo, P., Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos, 25, 2015, 013112.
-
(2015)
Chaos
, vol.25
, pp. 013112
-
-
Oumbé Tékam, G.1
Kitio Kwuimy, C.2
Woafo, P.3
-
57
-
-
77955194635
-
Magnetopiezoelastic energy harvesting driven by random excitations
-
Litak, G., Friswell, M., Adhikari, S., Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett., 96, 2010, 214103.
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 214103
-
-
Litak, G.1
Friswell, M.2
Adhikari, S.3
-
58
-
-
79960986831
-
Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions
-
Litak, G., Borowiec, M., Friswell, M.I., Adhikari, S., Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions. J. Theor. Appl. Mech. 49 (2011), 757–764.
-
(2011)
J. Theor. Appl. Mech.
, vol.49
, pp. 757-764
-
-
Litak, G.1
Borowiec, M.2
Friswell, M.I.3
Adhikari, S.4
-
59
-
-
84857867271
-
Piezoelectric buckled beams for random vibration energy harvesting
-
Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V., Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct., 21, 2012, 035021.
-
(2012)
Smart Mater. Struct.
, vol.21
, pp. 035021
-
-
Cottone, F.1
Gammaitoni, L.2
Vocca, H.3
Ferrari, M.4
Ferrari, V.5
-
60
-
-
79952539208
-
Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise
-
Daqaq, M.F., Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330 (2011), 2554–2564.
-
(2011)
J. Sound Vib.
, vol.330
, pp. 2554-2564
-
-
Daqaq, M.F.1
-
61
-
-
84899586580
-
Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise
-
He, Q., Daqaq, M.F., Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vib. 333 (2014), 3479–3489.
-
(2014)
J. Sound Vib.
, vol.333
, pp. 3479-3489
-
-
He, Q.1
Daqaq, M.F.2
-
62
-
-
84875139208
-
On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system
-
Zhao, S., Erturk, A., On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett., 102, 2013, 103902.
-
(2013)
Appl. Phys. Lett.
, vol.102
, pp. 103902
-
-
Zhao, S.1
Erturk, A.2
-
63
-
-
84951179525
-
Dynamics and coherence resonance of tri-stable energy harvesting system
-
Haitao, L., Weiyang, Q., Chunbo, L., Wangzheng, D., Zhiyong, Z., Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct., 25, 2015, 015001.
-
(2015)
Smart Mater. Struct.
, vol.25
, pp. 015001
-
-
Haitao, L.1
Weiyang, Q.2
Chunbo, L.3
Wangzheng, D.4
Zhiyong, Z.5
-
64
-
-
84893628406
-
Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester
-
Su, W.-J., Zu, J., Zhu, Y., Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 25 (2013), 430–442.
-
(2013)
J. Intell. Mater. Syst. Struct.
, vol.25
, pp. 430-442
-
-
Su, W.-J.1
Zu, J.2
Zhu, Y.3
-
65
-
-
84906213994
-
Design and development of a novel bi-directional piezoelectric energy harvester
-
Su, W.-J., Zu, J.W., Design and development of a novel bi-directional piezoelectric energy harvester. Smart Mater. Struct., 23, 2014, 095012.
-
(2014)
Smart Mater. Struct.
, vol.23
, pp. 095012
-
-
Su, W.-J.1
Zu, J.W.2
-
66
-
-
77956572872
-
A piezoelectric bistable plate for nonlinear broadband energy harvesting
-
Arrieta, A., Hagedorn, P., Erturk, A., Inman, D., A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett., 97, 2010, 104102.
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 104102
-
-
Arrieta, A.1
Hagedorn, P.2
Erturk, A.3
Inman, D.4
-
67
-
-
84926255337
-
M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation
-
Leadenham, S., Erturk, A., M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. J. Sound Vib. 333 (2014), 6209–6223.
-
(2014)
J. Sound Vib.
, vol.333
, pp. 6209-6223
-
-
Leadenham, S.1
Erturk, A.2
-
68
-
-
70349218879
-
Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures
-
Arrieta, A., Neild, S., Wagg, D., Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn. 58 (2009), 259–272.
-
(2009)
Nonlinear Dyn.
, vol.58
, pp. 259-272
-
-
Arrieta, A.1
Neild, S.2
Wagg, D.3
-
69
-
-
84859952487
-
Optimal configurations of bistable piezo-composites for energy harvesting
-
Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D., Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett., 100, 2012, 114104.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 114104
-
-
Betts, D.N.1
Kim, H.A.2
Bowen, C.R.3
Inman, D.4
-
70
-
-
84884551264
-
Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application
-
Betts, D.N., Bowen, C.R., Kim, H.A., Gathercole, N., Clarke, C.T., Inman, D.J., Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. Eur. Phys. J. Spec. Top. 222 (2013), 1553–1562.
-
(2013)
Eur. Phys. J. Spec. Top.
, vol.222
, pp. 1553-1562
-
-
Betts, D.N.1
Bowen, C.R.2
Kim, H.A.3
Gathercole, N.4
Clarke, C.T.5
Inman, D.J.6
-
71
-
-
84924053446
-
Impact-induced high-energy orbits of nonlinear energy harvesters
-
Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J., Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett., 106, 2015, 093901.
-
(2015)
Appl. Phys. Lett.
, vol.106
, pp. 093901
-
-
Zhou, S.1
Cao, J.2
Inman, D.J.3
Liu, S.4
Wang, W.5
Lin, J.6
-
72
-
-
84994591094
-
Surfing the high energy output branch of nonlinear energy harvesters
-
Mallick, D., Amann, A., Roy, S., Surfing the high energy output branch of nonlinear energy harvesters. Phys. Rev. Lett., 117, 2016, 197701.
-
(2016)
Phys. Rev. Lett.
, vol.117
, pp. 197701
-
-
Mallick, D.1
Amann, A.2
Roy, S.3
-
73
-
-
85023775914
-
Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations
-
Lan, C., Tang, L., Qin, W., Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. Eur. Phys. J. Appl. Phys., 79, 2017, 20902.
-
(2017)
Eur. Phys. J. Appl. Phys.
, vol.79
, pp. 20902
-
-
Lan, C.1
Tang, L.2
Qin, W.3
-
74
-
-
85044009070
-
Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters
-
Haji Hosseinloo, A., Slotine, J.-J., Turitsyn, K., Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters. J. Vib. Control, 2017, 10.1177/1077546316688992.
-
(2017)
J. Vib. Control
-
-
Haji Hosseinloo, A.1
Slotine, J.-J.2
Turitsyn, K.3
-
75
-
-
20144389632
-
Improving power output for vibration-based energy scavengers
-
Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V., Improving power output for vibration-based energy scavengers. IEEE Pervas. Comput. 4 (2005), 28–36.
-
(2005)
IEEE Pervas. Comput.
, vol.4
, pp. 28-36
-
-
Roundy, S.1
Leland, E.S.2
Baker, J.3
Carleton, E.4
Reilly, E.5
Lai, E.6
Otis, B.7
Rabaey, J.M.8
Wright, P.K.9
Sundararajan, V.10
-
76
-
-
85166852485
-
-
Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. in Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA).
-
Baker, J., Roundy, S., and Wright, P. (2005). Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. in Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA).
-
(2005)
-
-
Baker, J.1
Roundy, S.2
Wright, P.3
-
78
-
-
58149344956
-
Characterization of different beam shapes for piezoelectric energy harvesting
-
Goldschmidtboeing, F., Woias, P., Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng., 18, 2008, 104013.
-
(2008)
J. Micromech. Microeng.
, vol.18
, pp. 104013
-
-
Goldschmidtboeing, F.1
Woias, P.2
-
79
-
-
84891123022
-
Design and performance of variable-shaped piezoelectric energy harvesters
-
Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R., Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25 (2014), 174–186.
-
(2014)
J. Intell. Mater. Syst. Struct.
, vol.25
, pp. 174-186
-
-
Ben Ayed, S.1
Abdelkefi, A.2
Najar, F.3
Hajj, M.R.4
-
80
-
-
84862924167
-
Design optimization of piezoelectric energy harvester subject to tip excitation
-
Park, J., Lee, S., Kwak, B.M., Design optimization of piezoelectric energy harvester subject to tip excitation. J. Mech. Sci. Technol. 26 (2012), 137–143.
-
(2012)
J. Mech. Sci. Technol.
, vol.26
, pp. 137-143
-
-
Park, J.1
Lee, S.2
Kwak, B.M.3
-
81
-
-
78649237429
-
Improving the performance of a piezoelectric energy harvester using a variable thickness beam
-
Paquin, S., St-Amant, Y., Improving the performance of a piezoelectric energy harvester using a variable thickness beam. Smart Mater. Struct., 19, 2010, 105020.
-
(2010)
Smart Mater. Struct.
, vol.19
, pp. 105020
-
-
Paquin, S.1
St-Amant, Y.2
-
82
-
-
70350413725
-
Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells
-
Rupp, C.J., Evgrafov, A., Maute, K., Dunn, M.L., Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J. Intell. Mater. Syst. Struct. 20 (2009), 1923–1939.
-
(2009)
J. Intell. Mater. Syst. Struct.
, vol.20
, pp. 1923-1939
-
-
Rupp, C.J.1
Evgrafov, A.2
Maute, K.3
Dunn, M.L.4
-
83
-
-
77954757726
-
A level set approach for optimal design of smart energy harvesters
-
Chen, S., Gonella, S., Chen, W., Liu, W.K., A level set approach for optimal design of smart energy harvesters. Comput. Methods Appl. Mech. Eng. 199 (2010), 2532–2543.
-
(2010)
Comput. Methods Appl. Mech. Eng.
, vol.199
, pp. 2532-2543
-
-
Chen, S.1
Gonella, S.2
Chen, W.3
Liu, W.K.4
-
84
-
-
84973369555
-
Topology optimization of piezoelectric nanostructures
-
Nanthakumar, S., Lahmer, T., Zhuang, X., Park, H.S., Rabczuk, T., Topology optimization of piezoelectric nanostructures. J. Mech. Phys. Solid. 94 (2016), 316–335.
-
(2016)
J. Mech. Phys. Solid.
, vol.94
, pp. 316-335
-
-
Nanthakumar, S.1
Lahmer, T.2
Zhuang, X.3
Park, H.S.4
Rabczuk, T.5
-
85
-
-
84879687429
-
Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints
-
Wein, F., Kaltenbacher, M., Stingl, M., Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints. Struct. Multidiscip. O. 48 (2013), 173–185.
-
(2013)
Struct. Multidiscip. O.
, vol.48
, pp. 173-185
-
-
Wein, F.1
Kaltenbacher, M.2
Stingl, M.3
-
86
-
-
84894264952
-
Design methodology of piezoelectric energy-harvesting skin using topology optimization
-
Takezawa, A., Kitamura, M., Vatanabe, S.L., Silva, E.C.N., Design methodology of piezoelectric energy-harvesting skin using topology optimization. Struct. Multidiscip. O. 49 (2014), 281–297.
-
(2014)
Struct. Multidiscip. O.
, vol.49
, pp. 281-297
-
-
Takezawa, A.1
Kitamura, M.2
Vatanabe, S.L.3
Silva, E.C.N.4
-
87
-
-
69649107363
-
Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization
-
Nakasone, P.H., Silva, E.C., Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization. Proc. SPIE, 2009, 10.1117/12.816467.
-
(2009)
Proc. SPIE
-
-
Nakasone, P.H.1
Silva, E.C.2
-
88
-
-
59449100173
-
Topology optimization of energy harvesting devices using piezoelectric materials
-
Zheng, B., Chang, C.-J., Gea, H.C., Topology optimization of energy harvesting devices using piezoelectric materials. Struct. Multidiscip. O. 38 (2009), 17–23.
-
(2009)
Struct. Multidiscip. O.
, vol.38
, pp. 17-23
-
-
Zheng, B.1
Chang, C.-J.2
Gea, H.C.3
-
89
-
-
84946935471
-
Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting
-
Jia, Y., Seshia, A.A., Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J. Microelectromech. Syst. 25 (2016), 108–117.
-
(2016)
J. Microelectromech. Syst.
, vol.25
, pp. 108-117
-
-
Jia, Y.1
Seshia, A.A.2
-
90
-
-
85020288435
-
Introducing arc-shaped piezoelectric elements into energy harvesters
-
Yang, Z., Wang, Y.Q., Zuo, L., Zu, J., Introducing arc-shaped piezoelectric elements into energy harvesters. Energ. Convers. Manag. 148 (2017), 260–266.
-
(2017)
Energ. Convers. Manag.
, vol.148
, pp. 260-266
-
-
Yang, Z.1
Wang, Y.Q.2
Zuo, L.3
Zu, J.4
-
91
-
-
84857291859
-
Charge redistribution in piezoelectric energy harvesters
-
Stewart, M., Weaver, P.M., Cain, M., Charge redistribution in piezoelectric energy harvesters. Appl. Phys. Lett. 100 (2012), 073901–073901-3.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 073901-073901-3
-
-
Stewart, M.1
Weaver, P.M.2
Cain, M.3
-
92
-
-
85026357054
-
A. new electrode design method in piezoelectric vibration energy harvesters to maximize output power
-
Du, S., Jia, Y., Chen, S.-T., Zhao, C., Sun, B., Arroyo, E., Seshia, A.A., A. new electrode design method in piezoelectric vibration energy harvesters to maximize output power. Sensor. Actuator. Phys. 263 (2017), 693–701.
-
(2017)
Sensor. Actuator. Phys.
, vol.263
, pp. 693-701
-
-
Du, S.1
Jia, Y.2
Chen, S.-T.3
Zhao, C.4
Sun, B.5
Arroyo, E.6
Seshia, A.A.7
-
93
-
-
77952994643
-
Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams
-
Erturk, A., Tarazaga, P.A., Farmer, J.R., Inman, D.J., Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust., 131, 2009, 011010.
-
(2009)
J. Vib. Acoust.
, vol.131
, pp. 011010
-
-
Erturk, A.1
Tarazaga, P.A.2
Farmer, J.R.3
Inman, D.J.4
-
94
-
-
24644486968
-
Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment
-
Cho, J., Anderson, M., Richards, R., Bahr, D., Richards, C., Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment. J. Micromech. Microeng., 15, 2005, 1804.
-
(2005)
J. Micromech. Microeng.
, vol.15
, pp. 1804
-
-
Cho, J.1
Anderson, M.2
Richards, R.3
Bahr, D.4
Richards, C.5
-
95
-
-
85166813979
-
-
J. Zu. Charge Redistribution in Flextensional Piezoelectric Energy Harvesters. Trans Tech.
-
Yang, Z.B. and J. Zu. Charge Redistribution in Flextensional Piezoelectric Energy Harvesters. Trans Tech.
-
-
-
Yang, Z.B.1
-
96
-
-
84925645147
-
Effect of electrode configurations on piezoelectric vibration energy harvesting performance
-
Kim, M., Dugundji, J., Wardle, B.L., Effect of electrode configurations on piezoelectric vibration energy harvesting performance. Smart Mater. Struct., 24, 2015, 045026.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 045026
-
-
Kim, M.1
Dugundji, J.2
Wardle, B.L.3
-
97
-
-
84866060236
-
Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure
-
Zhao, J., Zheng, X., Zhou, L., Zhang, Y., Sun, J., Dong, W., Deng, S., Peng, S., Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure. Smart Mater. Struct., 21, 2012, 105006.
-
(2012)
Smart Mater. Struct.
, vol.21
, pp. 105006
-
-
Zhao, J.1
Zheng, X.2
Zhou, L.3
Zhang, Y.4
Sun, J.5
Dong, W.6
Deng, S.7
Peng, S.8
-
98
-
-
84928624084
-
Piezoelectric energy harvesting through shear mode operation
-
Malakooti, M.H., Sodano, H.A., Piezoelectric energy harvesting through shear mode operation. Smart Mater. Struct., 24, 2015, 055005.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 055005
-
-
Malakooti, M.H.1
Sodano, H.A.2
-
99
-
-
84899446477
-
A shear-mode energy harvesting device based on torsional stresses
-
Kulkarni, V., Ben-Mrad, R., Prasad, S.E., Nemana, S., A shear-mode energy harvesting device based on torsional stresses. IEEE/ASME Trans. Mechatronics 19 (2014), 801–807.
-
(2014)
IEEE/ASME Trans. Mechatronics
, vol.19
, pp. 801-807
-
-
Kulkarni, V.1
Ben-Mrad, R.2
Prasad, S.E.3
Nemana, S.4
-
100
-
-
77749279707
-
3 single crystal cantilever
-
3 single crystal cantilever. Appl. Phys. Lett., 96, 2010, 083502.
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 083502
-
-
Ren, B.1
Or, S.W.2
Zhang, Y.3
Zhang, Q.4
Li, X.5
Jiao, J.6
Wang, W.7
Liu, D.8
Zhao, X.9
Luo, H.10
-
101
-
-
84881267234
-
Single degree of freedom shear-mode piezoelectric energy harvester
-
Aladwani, A., Aldraihem, O., Baz, A., Single degree of freedom shear-mode piezoelectric energy harvester. J. Vib. Acoust., 135, 2013, 051011.
-
(2013)
J. Vib. Acoust.
, vol.135
, pp. 051011
-
-
Aladwani, A.1
Aldraihem, O.2
Baz, A.3
-
102
-
-
84864222758
-
3
-
3. Appl. Phys. Lett., 101, 2012, 033502.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 033502
-
-
Xu, C.D.1
Ren, B.2
Di, W.N.3
Liang, Z.4
Jiao, J.5
Li, L.Y.6
Li, L.7
Zhao, X.Y.8
Luo, H.S.9
Wang, D.10
-
103
-
-
85018472482
-
A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach
-
Zou, H.-X., Zhang, W.-M., Li, W.-B., Hu, K.-M., Wei, K.-X., Peng, Z.-K., Meng, G., A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Appl. Phys. Lett., 110, 2017, 163904.
-
(2017)
Appl. Phys. Lett.
, vol.110
, pp. 163904
-
-
Zou, H.-X.1
Zhang, W.-M.2
Li, W.-B.3
Hu, K.-M.4
Wei, K.-X.5
Peng, Z.-K.6
Meng, G.7
-
104
-
-
84993965267
-
3 ceramic
-
3 ceramic. Appl. Phys. Lett., 109, 2016, 173901.
-
(2016)
Appl. Phys. Lett.
, vol.109
, pp. 173901
-
-
Wu, J.1
Chen, X.2
Chu, Z.3
Shi, W.4
Yu, Y.5
Dong, S.6
-
105
-
-
9144256385
-
Energy harvesting using a Piezoelectric “Cymbal” Transducer in dynamic environment
-
Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E., Hofmann, H.F., Energy harvesting using a Piezoelectric “Cymbal” Transducer in dynamic environment. Jpn. J. Appl. Phys., 43, 2004, 6178.
-
(2004)
Jpn. J. Appl. Phys.
, vol.43
, pp. 6178
-
-
Kim, H.W.1
Batra, A.2
Priya, S.3
Uchino, K.4
Markley, D.5
Newnham, R.E.6
Hofmann, H.F.7
-
106
-
-
84904011619
-
A flextensional piezo-composite structure for energy harvesting applications
-
Tufekcioglu, E., Dogan, A., A flextensional piezo-composite structure for energy harvesting applications. Sensor. Actuator. Phys. 216 (2014), 355–363.
-
(2014)
Sensor. Actuator. Phys.
, vol.216
, pp. 355-363
-
-
Tufekcioglu, E.1
Dogan, A.2
-
107
-
-
84945236798
-
Piezoelectric energy harvesting in internal fluid flow
-
Lee, H.J., Sherrit, S., Tosi, L.P., Walkemeyer, P., Colonius, T., Piezoelectric energy harvesting in internal fluid flow. Sensors (Basel) 15 (2015), 26039–26062.
-
(2015)
Sensors (Basel)
, vol.15
, pp. 26039-26062
-
-
Lee, H.J.1
Sherrit, S.2
Tosi, L.P.3
Walkemeyer, P.4
Colonius, T.5
-
108
-
-
85011835425
-
Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester
-
Yang, Z., Zu, J., Luo, J., Peng, Y., Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 28 (2017), 357–366.
-
(2017)
J. Intell. Mater. Syst. Struct.
, vol.28
, pp. 357-366
-
-
Yang, Z.1
Zu, J.2
Luo, J.3
Peng, Y.4
-
109
-
-
84878307251
-
Energy harvesting using a PZT ceramic multilayer stack
-
Xu, T.-B., Siochi, E.J., Kang, J.H., Zuo, L., Zhou, W., Tang, X., Jiang, X., Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct., 22, 2013, 065015.
-
(2013)
Smart Mater. Struct.
, vol.22
, pp. 065015
-
-
Xu, T.-B.1
Siochi, E.J.2
Kang, J.H.3
Zuo, L.4
Zhou, W.5
Tang, X.6
Jiang, X.7
-
110
-
-
84955507934
-
Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting
-
Moure, A., Rodríguez, M.I., Rueda, S.H., Gonzalo, A., Rubio-Marcos, F., Cuadros, D.U., Pérez-Lepe, A., Fernández, J., Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energ. Convers. Manag. 112 (2016), 246–253.
-
(2016)
Energ. Convers. Manag.
, vol.112
, pp. 246-253
-
-
Moure, A.1
Rodríguez, M.I.2
Rueda, S.H.3
Gonzalo, A.4
Rubio-Marcos, F.5
Cuadros, D.U.6
Pérez-Lepe, A.7
Fernández, J.8
-
111
-
-
84904976718
-
Piezoelectric energy harvesting from traffic-induced pavement vibrations
-
Jiang, X., Li, Y., Li, J., Wang, J., Yao, J., Piezoelectric energy harvesting from traffic-induced pavement vibrations. J. Renew. Sustain. Energ., 6, 2014, 043110.
-
(2014)
J. Renew. Sustain. Energ.
, vol.6
, pp. 043110
-
-
Jiang, X.1
Li, Y.2
Li, J.3
Wang, J.4
Yao, J.5
-
112
-
-
84902192173
-
Energy harvesting of piezoelectric stack actuator from a shock event
-
Lee, A.J., Wang, Y., Inman, D.J., Energy harvesting of piezoelectric stack actuator from a shock event. J. Vib. Acoust., 136, 2014, 011016.
-
(2014)
J. Vib. Acoust.
, vol.136
, pp. 011016
-
-
Lee, A.J.1
Wang, Y.2
Inman, D.J.3
-
113
-
-
84964555258
-
A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads
-
Wang, X., Shi, Z., Wang, J., Xiang, H., A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads. Smart Mater. Struct., 25, 2016, 055005.
-
(2016)
Smart Mater. Struct.
, vol.25
, pp. 055005
-
-
Wang, X.1
Shi, Z.2
Wang, J.3
Xiang, H.4
-
114
-
-
79960610090
-
A piezoelectric multilayer-stacked hybrid actuation/transduction system
-
Xu, T.-B., Jiang, X., Su, J., A piezoelectric multilayer-stacked hybrid actuation/transduction system. Appl. Phys. Lett., 98, 2011, 243503.
-
(2011)
Appl. Phys. Lett.
, vol.98
, pp. 243503
-
-
Xu, T.-B.1
Jiang, X.2
Su, J.3
-
115
-
-
77957654636
-
High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers
-
Morimoto, K., Kanno, I., Wasa, K., Kotera, H., High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensor. Actuator. Phys. 163 (2010), 428–432.
-
(2010)
Sensor. Actuator. Phys.
, vol.163
, pp. 428-432
-
-
Morimoto, K.1
Kanno, I.2
Wasa, K.3
Kotera, H.4
-
116
-
-
84973573504
-
Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils
-
Yeo, H.G., Ma, X., Rahn, C., Trolier-McKinstry, S., Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils. Adv. Funct. Mater. 26 (2016), 5940–5946.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 5940-5946
-
-
Yeo, H.G.1
Ma, X.2
Rahn, C.3
Trolier-McKinstry, S.4
-
117
-
-
84966263531
-
Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester
-
Hwang, G.T., Annapureddy, V., Han, J.H., Joe, D.J., Baek, C., Park, D.Y., Kim, D.H., Park, J.H., Jeong, C.K., Park, K.-I., et al. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater., 6, 2016, 10.1002/aenm.201600237.
-
(2016)
Adv. Energy Mater.
, vol.6
-
-
Hwang, G.T.1
Annapureddy, V.2
Han, J.H.3
Joe, D.J.4
Baek, C.5
Park, D.Y.6
Kim, D.H.7
Park, J.H.8
Jeong, C.K.9
Park, K.-I.10
-
118
-
-
84880317348
-
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
-
Xu, S., Hansen, B.J., Wang, Z.L., Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun., 1, 2010, 93.
-
(2010)
Nat. Commun.
, vol.1
, pp. 93
-
-
Xu, S.1
Hansen, B.J.2
Wang, Z.L.3
-
119
-
-
84889674209
-
Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film
-
Tang, G., Yang, B., Liu, J.-q., Xu, B., Zhu, H.-y., Yang, C.-s., Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensor. Actuator. Phys. 205 (2014), 150–155.
-
(2014)
Sensor. Actuator. Phys.
, vol.205
, pp. 150-155
-
-
Tang, G.1
Yang, B.2
Liu, J.-Q.3
Xu, B.4
Zhu, H.-Y.5
Yang, C.-S.6
-
120
-
-
85166824239
-
-
(2008). Performance analysis of single crystal PMN-PZT unimorphs for piezoelectric energy harvesting. in Adaptive Structures and Intelligent Systems, SMASIS2008.
-
Erturk, A., Bilgen, O., and Inman, D.J. (2008). Performance analysis of single crystal PMN-PZT unimorphs for piezoelectric energy harvesting. in Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2008.
-
Proceedings of the ASME Conference on Smart Materials
-
-
Erturk, A.1
Bilgen, O.2
Inman, D.J.3
-
121
-
-
84904709233
-
Self-powered cardiac pacemaker Enabled by flexible single crystalline PMN-PT piezoelectric energy harvester
-
Hwang, G.T., Park, H., Lee, J.H., Oh, S., Park, K.I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., et al. Self-powered cardiac pacemaker Enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26 (2014), 4880–4887.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4880-4887
-
-
Hwang, G.T.1
Park, H.2
Lee, J.H.3
Oh, S.4
Park, K.I.5
Byun, M.6
Park, H.7
Ahn, G.8
Jeong, C.K.9
No, K.10
-
122
-
-
84929943914
-
A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT
-
Hwang, G.T., Yang, J., Yang, S.H., Lee, H.-Y., Lee, M., Park, D.Y., Han, J.H., Lee, S.J., Jeong, C.K., Kim, J., et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT. Adv. Energy Mater., 5, 2015, 10.1002/aenm.201500051.
-
(2015)
Adv. Energy Mater.
, vol.5
-
-
Hwang, G.T.1
Yang, J.2
Yang, S.H.3
Lee, H.-Y.4
Lee, M.5
Park, D.Y.6
Han, J.H.7
Lee, S.J.8
Jeong, C.K.9
Kim, J.10
-
123
-
-
84995469392
-
3 flake array
-
3 flake array. Smart Mater. Struct., 25, 2016, 125015.
-
(2016)
Smart Mater. Struct.
, vol.25
, pp. 125015
-
-
Zeng, Z.1
Xia, R.2
Gai, L.3
Wang, X.4
Lin, D.5
Luo, H.6
Li, F.7
Wang, D.8
-
124
-
-
84879092630
-
Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device
-
Xu, S., Yeh, Y.W., Poirier, G., McAlpine, M.C., Register, R.A., Yao, N., Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett. 13 (2013), 2393–2398.
-
(2013)
Nano Lett.
, vol.13
, pp. 2393-2398
-
-
Xu, S.1
Yeh, Y.W.2
Poirier, G.3
McAlpine, M.C.4
Register, R.A.5
Yao, N.6
-
125
-
-
85019559438
-
PMN-PT nanostructures for energy scavenging
-
Wu, F., Yao, N., PMN-PT nanostructures for energy scavenging. Semicond. Sci. Technol., 32, 2017, 063001.
-
(2017)
Semicond. Sci. Technol.
, vol.32
, pp. 063001
-
-
Wu, F.1
Yao, N.2
-
126
-
-
85013360380
-
A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring
-
Chen, Y., Zhang, Y., Yuan, F., Ding, F., Schmidt, O.G., A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring. Adv. Electron. Mater., 3, 2017, 10.1002/aelm.201600540.
-
(2017)
Adv. Electron. Mater.
, vol.3
-
-
Chen, Y.1
Zhang, Y.2
Yuan, F.3
Ding, F.4
Schmidt, O.G.5
-
127
-
-
79960213460
-
Multiple cell configuration electromagnetic vibration energy harvester
-
Marin, A., Bressers, S., Priya, S., Multiple cell configuration electromagnetic vibration energy harvester. J. Phys. D, 44, 2011, 295501.
-
(2011)
J. Phys. D
, vol.44
, pp. 295501
-
-
Marin, A.1
Bressers, S.2
Priya, S.3
-
128
-
-
34547578774
-
A micro electromagnetic generator for vibration energy harvesting
-
Beeby, S.P., Torah, R., Tudor, M., Glynne-Jones, P., O'Donnell, T., Saha, C., Roy, S., A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng., 17, 2007, 1257.
-
(2007)
J. Micromech. Microeng.
, vol.17
, pp. 1257
-
-
Beeby, S.P.1
Torah, R.2
Tudor, M.3
Glynne-Jones, P.4
O'Donnell, T.5
Saha, C.6
Roy, S.7
-
129
-
-
85019398388
-
On the efficiency of piezoelectric energy harvesters
-
Yang, Z., Erturk, A., Zu, J., On the efficiency of piezoelectric energy harvesters. Extreme Mech. Lett. 15 (2017), 26–37.
-
(2017)
Extreme Mech. Lett.
, vol.15
, pp. 26-37
-
-
Yang, Z.1
Erturk, A.2
Zu, J.3
-
130
-
-
84928636666
-
Efficiency of piezoelectric mechanical vibration energy harvesting
-
Kim, M., Dugundji, J., Wardle, B.L., Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Mater. Struct., 24, 2015, 055006.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 055006
-
-
Kim, M.1
Dugundji, J.2
Wardle, B.L.3
-
131
-
-
84856401861
-
The performance of a self-excited fluidic energy harvester
-
Akaydin, H.D., Elvin, N., Andreopoulos, Y., The performance of a self-excited fluidic energy harvester. Smart Mater. Struct., 21, 2012, 025007.
-
(2012)
Smart Mater. Struct.
, vol.21
, pp. 025007
-
-
Akaydin, H.D.1
Elvin, N.2
Andreopoulos, Y.3
-
132
-
-
84903699927
-
The power and efficiency limits of piezoelectric energy harvesting
-
Shafer, M.W., Garcia, E., The power and efficiency limits of piezoelectric energy harvesting. J. Vib. Acoust., 136, 2014, 021007.
-
(2014)
J. Vib. Acoust.
, vol.136
, pp. 021007
-
-
Shafer, M.W.1
Garcia, E.2
-
133
-
-
27144528640
-
On the effectiveness of vibration-based energy harvesting
-
Roundy, S., On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16 (2005), 809–823.
-
(2005)
J. Intell. Mater. Syst. Struct.
, vol.16
, pp. 809-823
-
-
Roundy, S.1
-
134
-
-
84948800274
-
A new figure of merit for wideband vibration energy harvesters
-
Liu, W.Q., Badel, A., Formosa, F., Wu, Y.P., A new figure of merit for wideband vibration energy harvesters. Smart Mater. Struct., 24, 2015, 125012.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 125012
-
-
Liu, W.Q.1
Badel, A.2
Formosa, F.3
Wu, Y.P.4
-
135
-
-
84891749686
-
Bandwidth of a nonlinear harvester with optimized electrical load
-
Cammarano, A., Gonzalez-Buelga, A., Neild, S., Burrow, S., Inman, D., Bandwidth of a nonlinear harvester with optimized electrical load. J. Phys. Conf. Ser., 476, 2013, 012071.
-
(2013)
J. Phys. Conf. Ser.
, vol.476
, pp. 012071
-
-
Cammarano, A.1
Gonzalez-Buelga, A.2
Neild, S.3
Burrow, S.4
Inman, D.5
-
136
-
-
85022183696
-
Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester
-
Dhote, S., Yang, Z., Zu, J., Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester. Mech. Syst. Signal Process. 98 (2018), 268–280.
-
(2018)
Mech. Syst. Signal Process.
, vol.98
, pp. 268-280
-
-
Dhote, S.1
Yang, Z.2
Zu, J.3
-
137
-
-
70349972972
-
Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film
-
Lee, B., Lin, S., Wu, W., Wang, X., Chang, P., Lee, C., Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J. Micromech. Microeng., 19, 2009, 065014.
-
(2009)
J. Micromech. Microeng.
, vol.19
, pp. 065014
-
-
Lee, B.1
Lin, S.2
Wu, W.3
Wang, X.4
Chang, P.5
Lee, C.6
-
138
-
-
68849103726
-
Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting
-
Shen, D., Park, J.-H., Noh, J.H., Choe, S.-Y., Kim, S.-H., Wikle, H.C., Kim, D.-J., Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensor. Actuator. Phys. 154 (2009), 103–108.
-
(2009)
Sensor. Actuator. Phys.
, vol.154
, pp. 103-108
-
-
Shen, D.1
Park, J.-H.2
Noh, J.H.3
Choe, S.-Y.4
Kim, S.-H.5
Wikle, H.C.6
Kim, D.-J.7
-
140
-
-
84861446730
-
Fabrication and analysis of high-performance piezoelectric MEMS generators
-
Tang, G., Liu, J.-q., Yang, B., Luo, J.-b., Liu, H.-s., Li, Y.-g., Yang, C.-s., He, D.-n., Dao, V.D., Tanaka, K., Sugiyama, S., Fabrication and analysis of high-performance piezoelectric MEMS generators. J. Micromech. Microeng., 22, 2012, 065017.
-
(2012)
J. Micromech. Microeng.
, vol.22
, pp. 065017
-
-
Tang, G.1
Liu, J.-Q.2
Yang, B.3
Luo, J.-B.4
Liu, H.-S.5
Li, Y.-G.6
Yang, C.-S.7
He, D.-N.8
Dao, V.D.9
Tanaka, K.10
Sugiyama, S.11
-
141
-
-
84959471852
-
Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence]
-
Minh le, V., Hara, M., Yokoyama, T., Nishihara, T., Ueda, M., Kuwano, H., Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 (2015), 2005–2008.
-
(2015)
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
, vol.62
, pp. 2005-2008
-
-
Minh le, V.1
Hara, M.2
Yokoyama, T.3
Nishihara, T.4
Ueda, M.5
Kuwano, H.6
-
142
-
-
85006043237
-
A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding
-
Tang, G., Yang, B., Hou, C., Li, G., Liu, J., Chen, X., Yang, C., A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding. Sci. Rep., 6, 2016, 38798.
-
(2016)
Sci. Rep.
, vol.6
, pp. 38798
-
-
Tang, G.1
Yang, B.2
Hou, C.3
Li, G.4
Liu, J.5
Chen, X.6
Yang, C.7
-
143
-
-
85052846654
-
Ultra-low resonant piezoelectric MEMS energy harvester with high power density
-
Song, H.-C., Kumar, P., Maurya, D., Kang, M.-G., Reynolds, W.T., Jeong, D.-Y., Kang, C.-Y., Priya, S., Ultra-low resonant piezoelectric MEMS energy harvester with high power density. J. Microelectromech. Syst. 26 (2017), 1226–1234.
-
(2017)
J. Microelectromech. Syst.
, vol.26
, pp. 1226-1234
-
-
Song, H.-C.1
Kumar, P.2
Maurya, D.3
Kang, M.-G.4
Reynolds, W.T.5
Jeong, D.-Y.6
Kang, C.-Y.7
Priya, S.8
-
144
-
-
71649092912
-
Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer
-
Dai, X., Wen, Y., Li, P., Yang, J., Zhang, G., Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer. Sensor. Actuator. Phys. 156 (2009), 350–358.
-
(2009)
Sensor. Actuator. Phys.
, vol.156
, pp. 350-358
-
-
Dai, X.1
Wen, Y.2
Li, P.3
Yang, J.4
Zhang, G.5
-
145
-
-
77949893197
-
Modeling and experimental verification of proof mass effects on vibration energy harvester performance
-
Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L., Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct., 19, 2010, 045023.
-
(2010)
Smart Mater. Struct.
, vol.19
, pp. 045023
-
-
Kim, M.1
Hoegen, M.2
Dugundji, J.3
Wardle, B.L.4
-
146
-
-
85166812665
-
-
-H. (2010). Impedance matching for improving piezoelectric energy harvesting systems. in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics.
-
Liang, J., and Liao, W.-H. (2010). Impedance matching for improving piezoelectric energy harvesting systems. in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics.
-
-
-
Liang, J.1
Liao, W.2
-
147
-
-
79551484697
-
Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation
-
Gu, L., Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron. J. 42 (2011), 277–282.
-
(2011)
Microelectron. J.
, vol.42
, pp. 277-282
-
-
Gu, L.1
-
148
-
-
79955380630
-
A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting
-
Li, X., Guo, M., Dong, S., A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 (2011), 698–703.
-
(2011)
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
, vol.58
, pp. 698-703
-
-
Li, X.1
Guo, M.2
Dong, S.3
-
149
-
-
79961213299
-
Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness
-
Yen, T.-T., Hirasawa, T., Wright, P.K., Pisano, A.P., Lin, L., Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness. J. Micromech. Microeng., 21, 2011, 085037.
-
(2011)
J. Micromech. Microeng.
, vol.21
, pp. 085037
-
-
Yen, T.-T.1
Hirasawa, T.2
Wright, P.K.3
Pisano, A.P.4
Lin, L.5
-
150
-
-
84880299484
-
A new energy harvester design for high power output at low frequencies
-
Dhakar, L., Liu, H., Tay, F., Lee, C., A new energy harvester design for high power output at low frequencies. Sensor. Actuator. Phys. 199 (2013), 344–352.
-
(2013)
Sensor. Actuator. Phys.
, vol.199
, pp. 344-352
-
-
Dhakar, L.1
Liu, H.2
Tay, F.3
Lee, C.4
-
151
-
-
84872732801
-
A novel two-degrees-of-freedom piezoelectric energy harvester
-
Wu, H., Tang, L., Yang, Y., Soh, C.K., A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 24 (2013), 357–368.
-
(2013)
J. Intell. Mater. Syst. Struct.
, vol.24
, pp. 357-368
-
-
Wu, H.1
Tang, L.2
Yang, Y.3
Soh, C.K.4
-
152
-
-
84877286883
-
Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites
-
Arrieta, A., Delpero, T., Bergamini, A., Ermanni, P., Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102 (2013), 173904–173904-4.
-
(2013)
Appl. Phys. Lett.
, vol.102
, pp. 173904-173904-4
-
-
Arrieta, A.1
Delpero, T.2
Bergamini, A.3
Ermanni, P.4
-
153
-
-
84903881068
-
A vibration energy harvester using magnet/piezoelectric composite transducer
-
Qiu, J., Chen, H., Wen, Y., Li, P., Yang, J., Li, W., A vibration energy harvester using magnet/piezoelectric composite transducer. J. Appl. Physiol., 115, 2014, 17E522.
-
(2014)
J. Appl. Physiol.
, vol.115
, pp. 17E522
-
-
Qiu, J.1
Chen, H.2
Wen, Y.3
Li, P.4
Yang, J.5
Li, W.6
-
154
-
-
84905377745
-
Enhanced energy harvesting performance of the piezoelectric unimorph with perpendicular electrodes
-
Ma, M., Xia, S., Li, Z., Xu, Z., Yao, X., Enhanced energy harvesting performance of the piezoelectric unimorph with perpendicular electrodes. Appl. Phys. Lett., 105, 2014, 043905.
-
(2014)
Appl. Phys. Lett.
, vol.105
, pp. 043905
-
-
Ma, M.1
Xia, S.2
Li, Z.3
Xu, Z.4
Yao, X.5
-
155
-
-
84898449091
-
Experimental study of a multi-impact energy harvester under low frequency excitations
-
Zhang, Y., Cai, C., Zhang, W., Experimental study of a multi-impact energy harvester under low frequency excitations. Smart Mater. Struct., 23, 2014, 055002.
-
(2014)
Smart Mater. Struct.
, vol.23
, pp. 055002
-
-
Zhang, Y.1
Cai, C.2
Zhang, W.3
-
156
-
-
84902440493
-
Energy harvester array using piezoelectric circular diaphragm for broadband vibration
-
Xiao, Z., Yang, T.q., Dong, Y., Wang, X.c., Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Appl. Phys. Lett., 104, 2014, 223904.
-
(2014)
Appl. Phys. Lett.
, vol.104
, pp. 223904
-
-
Xiao, Z.1
Yang, T.Q.2
Dong, Y.3
Wang, X.C.4
-
157
-
-
84939506192
-
A miniature mechanical-piezoelectric-configured three-axis vibrational energy harvester
-
Hung, C.-F., Chung, T.-K., Yeh, P.-C., Chen, C.-C., Wang, C.-M., Lin, S.-H., A miniature mechanical-piezoelectric-configured three-axis vibrational energy harvester. IEEE Sens. J. 15 (2015), 5601–5615.
-
(2015)
IEEE Sens. J.
, vol.15
, pp. 5601-5615
-
-
Hung, C.-F.1
Chung, T.-K.2
Yeh, P.-C.3
Chen, C.-C.4
Wang, C.-M.5
Lin, S.-H.6
-
158
-
-
84940703811
-
A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction
-
Singh, K.A., Kumar, R., Weber, R.J., A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction. IEEE Trans. Power Electron. 30 (2015), 6763–6774.
-
(2015)
IEEE Trans. Power Electron.
, vol.30
, pp. 6763-6774
-
-
Singh, K.A.1
Kumar, R.2
Weber, R.J.3
-
159
-
-
84928911791
-
Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations
-
Sriramdas, R., Chiplunkar, S., Cuduvally, R.M., Pratap, R., Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations. IEEE Sens. J. 15 (2015), 3338–3348.
-
(2015)
IEEE Sens. J.
, vol.15
, pp. 3338-3348
-
-
Sriramdas, R.1
Chiplunkar, S.2
Cuduvally, R.M.3
Pratap, R.4
-
160
-
-
84937779498
-
Harvesting vibration energy using two modal vibrations of a folded piezoelectric device
-
Gong, L.J., Pan, Q.S., Li, W., Yan, G.Y., Liu, Y.B., Feng, Z.H., Harvesting vibration energy using two modal vibrations of a folded piezoelectric device. Appl. Phys. Lett., 107, 2015, 033904.
-
(2015)
Appl. Phys. Lett.
, vol.107
, pp. 033904
-
-
Gong, L.J.1
Pan, Q.S.2
Li, W.3
Yan, G.Y.4
Liu, Y.B.5
Feng, Z.H.6
-
161
-
-
85022079716
-
High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate
-
Yi, Z., Yang, B., Li, G., Liu, J., Chen, X., Wang, X., Yang, C., High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate. Appl. Phys. Lett., 111, 2017, 013902.
-
(2017)
Appl. Phys. Lett.
, vol.111
, pp. 013902
-
-
Yi, Z.1
Yang, B.2
Li, G.3
Liu, J.4
Chen, X.5
Wang, X.6
Yang, C.7
-
162
-
-
85019766615
-
Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure
-
He, Q., Jiang, T., Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure. Appl. Phys. Lett., 110, 2017, 213901.
-
(2017)
Appl. Phys. Lett.
, vol.110
, pp. 213901
-
-
He, Q.1
Jiang, T.2
-
163
-
-
85013759609
-
Performance of a piezoelectric energy harvester in actual rain
-
Wong, V.-K., Ho, J.-H., Chai, A.-B., Performance of a piezoelectric energy harvester in actual rain. Energy 124 (2017), 364–371.
-
(2017)
Energy
, vol.124
, pp. 364-371
-
-
Wong, V.-K.1
Ho, J.-H.2
Chai, A.-B.3
-
164
-
-
41849127432
-
Harvesting raindrop energy: experimental study
-
Guigon, R., Chaillout, J.-J., Jager, T., Despesse, G., Harvesting raindrop energy: experimental study. Smart Mater. Struct., 17, 2008, 015039.
-
(2008)
Smart Mater. Struct.
, vol.17
, pp. 015039
-
-
Guigon, R.1
Chaillout, J.-J.2
Jager, T.3
Despesse, G.4
-
165
-
-
85008697507
-
Development of vibration-based piezoelectric raindrop energy harvesting system
-
Wong, C.H., Dahari, Z., Development of vibration-based piezoelectric raindrop energy harvesting system. J. Electron. Mater. 46 (2017), 1869–1882.
-
(2017)
J. Electron. Mater.
, vol.46
, pp. 1869-1882
-
-
Wong, C.H.1
Dahari, Z.2
-
166
-
-
85013448338
-
On accumulation of water droplets in piezoelectric energy harvesting
-
Wong, V.-K., Ho, J.-H., Sam, H.-K., On accumulation of water droplets in piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 28 (2017), 521–530.
-
(2017)
J. Intell. Mater. Syst. Struct.
, vol.28
, pp. 521-530
-
-
Wong, V.-K.1
Ho, J.-H.2
Sam, H.-K.3
-
167
-
-
85009962015
-
Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements
-
Guo, L., Lu, Q., Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew. Sustain. Energ. Rev. 72 (2017), 761–773.
-
(2017)
Renew. Sustain. Energ. Rev.
, vol.72
, pp. 761-773
-
-
Guo, L.1
Lu, Q.2
-
168
-
-
85166807200
-
-
-L. (2009). Event sensing and energy-harvesting power sources for gun-fired munitions. in SPIE Smart Structures Materials+ Nondestructive Evaluation and Health Monit.oring. International Society for Optics and Photonics.
-
Rastegar, J., Murray, R., Pereira, C., and Nguyen, H.-L. (2009). Event sensing and energy-harvesting power sources for gun-fired munitions. in SPIE Smart Structures Materials+ Nondestructive Evaluation and Health Monit.oring. International Society for Optics and Photonics.
-
-
-
Rastegar, J.1
Murray, R.2
Pereira, C.3
Nguyen, H.4
-
169
-
-
84938846572
-
Cutting tool vibration energy harvesting for wireless sensors applications
-
Ostasevicius, V., Markevicius, V., Jurenas, V., Zilys, M., Cepenas, M., Kizauskiene, L., Gyliene, V., Cutting tool vibration energy harvesting for wireless sensors applications. Sensor. Actuator. Phys. 233 (2015), 310–318.
-
(2015)
Sensor. Actuator. Phys.
, vol.233
, pp. 310-318
-
-
Ostasevicius, V.1
Markevicius, V.2
Jurenas, V.3
Zilys, M.4
Cepenas, M.5
Kizauskiene, L.6
Gyliene, V.7
-
170
-
-
84921784861
-
The case for energy harvesting on wildlife in flight
-
Shafer, M.W., MacCurdy, R., Shipley, J.R., Winkler, D., Guglielmo, C.G., Garcia, E., The case for energy harvesting on wildlife in flight. Smart Mater. Struct., 24, 2015, 025031.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 025031
-
-
Shafer, M.W.1
MacCurdy, R.2
Shipley, J.R.3
Winkler, D.4
Guglielmo, C.G.5
Garcia, E.6
-
171
-
-
84988504463
-
An energy harvesting underwater acoustic transmitter for aquatic animals
-
Li, H., Tian, C., Lu, J., Myjak, M.J., Martinez, J.J., Brown, R.S., Deng, Z.D., An energy harvesting underwater acoustic transmitter for aquatic animals. Sci. Rep., 6, 2016, 33804.
-
(2016)
Sci. Rep.
, vol.6
, pp. 33804
-
-
Li, H.1
Tian, C.2
Lu, J.3
Myjak, M.J.4
Martinez, J.J.5
Brown, R.S.6
Deng, Z.D.7
-
172
-
-
84890253320
-
Biomechanics and Motor Control of Human Movement
-
John Wiley & Sons
-
Winter, D.A., Biomechanics and Motor Control of Human Movement. 2009, John Wiley & Sons.
-
(2009)
-
-
Winter, D.A.1
-
173
-
-
35848965238
-
Muscles do more positive than negative work in human locomotion
-
DeVita, P., Helseth, J., Hortobagyi, T., Muscles do more positive than negative work in human locomotion. J. Exp. Biol. 210 (2007), 3361–3373.
-
(2007)
J. Exp. Biol.
, vol.210
, pp. 3361-3373
-
-
DeVita, P.1
Helseth, J.2
Hortobagyi, T.3
-
174
-
-
0035653531
-
When active muscles lengthen: properties and consequences of eccentric contractions
-
Lindstedt, S., LaStayo, P., Reich, T., When active muscles lengthen: properties and consequences of eccentric contractions. Physiology 16 (2001), 256–261.
-
(2001)
Physiology
, vol.16
, pp. 256-261
-
-
Lindstedt, S.1
LaStayo, P.2
Reich, T.3
-
175
-
-
0030408129
-
Human-powered wearable computing
-
Starner, T., Human-powered wearable computing. IBM Syst. J. 35 (1996), 618–629.
-
(1996)
IBM Syst. J.
, vol.35
, pp. 618-629
-
-
Starner, T.1
-
176
-
-
85166805045
-
-
Evaluation of motions and actuation methods for biomechanical energy harvesting. in Power Electronics Specialists Conference. PESC 04. 2004 IEEE 35th Annual. IEEE., 2004
-
Niu P., Chapman, P., Riemer, R., and Zhang, X. (2004). Evaluation of motions and actuation methods for biomechanical energy harvesting. in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. IEEE.
-
(2004)
-
-
Niu, P.1
Chapman, P.2
Riemer, R.3
Zhang, X.4
-
177
-
-
79955103117
-
Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions
-
Riemer, R., Shapiro, A., Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil., 8, 2011, 22.
-
(2011)
J. Neuroeng. Rehabil.
, vol.8
, pp. 22
-
-
Riemer, R.1
Shapiro, A.2
-
178
-
-
84984868910
-
An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking
-
Partridge, J., Bucknall, R., An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking. Cogent Eng., 3, 2016, 1215203.
-
(2016)
Cogent Eng.
, vol.3
, pp. 1215203
-
-
Partridge, J.1
Bucknall, R.2
-
179
-
-
85166846913
-
-
Footstep energy harvesting using heel strike-induced airflow for human activity sensing. in Wearable and Implantable Body Sensor Networks (BSN) IEEE 13th International Conference. 2016. IEEE.
-
Fu, H., Cao, K., Xu, R., Bhouri, M.A., Martínez-Botas, R., Kim, S.-G., and Yeatman, E.M. Footstep energy harvesting using heel strike-induced airflow for human activity sensing. in Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference. 2016. IEEE.
-
(2016)
-
-
Fu, H.1
Cao, K.2
Xu, R.3
Bhouri, M.A.4
Martínez-Botas, R.5
Kim, S.-G.6
Yeatman, E.M.7
-
180
-
-
84921760572
-
Energy harvesting from human motion: exploiting swing and shock excitations
-
Ylli, K., Hoffmann, D., Willmann, A., Becker, P., Folkmer, B., Manoli, Y., Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater. Struct., 24, 2015, 025029.
-
(2015)
Smart Mater. Struct.
, vol.24
, pp. 025029
-
-
Ylli, K.1
Hoffmann, D.2
Willmann, A.3
Becker, P.4
Folkmer, B.5
Manoli, Y.6
-
181
-
-
0004721963
-
Unobtrusive Integration of Magnetic Generator Systems into Common Footwear
-
Massachusetts Institute of Technology
-
Hayashida, J.Y., Unobtrusive Integration of Magnetic Generator Systems into Common Footwear. 2000, Massachusetts Institute of Technology.
-
(2000)
-
-
Hayashida, J.Y.1
-
182
-
-
0035330620
-
Energy scavenging with shoe-mounted piezoelectrics
-
Shenck, N.S., Paradiso, J.A., Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21 (2001), 30–42.
-
(2001)
IEEE Micro
, vol.21
, pp. 30-42
-
-
Shenck, N.S.1
Paradiso, J.A.2
-
183
-
-
78649263422
-
Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers
-
Moro, L., Benasciutti, D., Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Mater. Struct., 19, 2010, 115011.
-
(2010)
Smart Mater. Struct.
, vol.19
, pp. 115011
-
-
Moro, L.1
Benasciutti, D.2
-
184
-
-
85017135125
-
Scavenging energy from human walking through a shoe-mounted piezoelectric harvester
-
Fan, K., Liu, Z., Liu, H., Wang, L., Zhu, Y., Yu, B., Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett., 110, 2017, 143902.
-
(2017)
Appl. Phys. Lett.
, vol.110
, pp. 143902
-
-
Fan, K.1
Liu, Z.2
Liu, H.3
Wang, L.4
Zhu, Y.5
Yu, B.6
-
185
-
-
27144483585
-
Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts
-
Mateu, L., Moll, F., Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16 (2005), 835–845.
-
(2005)
J. Intell. Mater. Syst. Struct.
, vol.16
, pp. 835-845
-
-
Mateu, L.1
Moll, F.2
-
186
-
-
85166853579
-
-
A piezoelectric energy-harvesting shoe system for podiatric sensing. in Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE. IEEE., 2014
-
Meier, R., Kelly, N., Almog, O., and Chiang, P. (2014). A piezoelectric energy-harvesting shoe system for podiatric sensing. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE.
-
(2014)
-
-
Meier, R.1
Kelly, N.2
Almog, O.3
Chiang, P.4
-
187
-
-
84878313839
-
Shoe mounted PVDF piezoelectric transducer for energy harvesting
-
Fourie, D., Shoe mounted PVDF piezoelectric transducer for energy harvesting. MORJ Rep. 19 (2010), 66–70.
-
(2010)
MORJ Rep.
, vol.19
, pp. 66-70
-
-
Fourie, D.1
-
188
-
-
84872100883
-
Insole pedometer with piezoelectric energy harvester and 2 V organic circuits
-
Ishida, K., Huang, T.-C., Honda, K., Shinozuka, Y., Fuketa, H., Yokota, T., Zschieschang, U., Klauk, H., Tortissier, G., Sekitani, T., et al. Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J. Solid State Circ. 48 (2013), 255–264.
-
(2013)
IEEE J. Solid State Circ.
, vol.48
, pp. 255-264
-
-
Ishida, K.1
Huang, T.-C.2
Honda, K.3
Shinozuka, Y.4
Fuketa, H.5
Yokota, T.6
Zschieschang, U.7
Klauk, H.8
Tortissier, G.9
Sekitani, T.10
-
189
-
-
84904211354
-
A shoe-embedded piezoelectric energy harvester for wearable sensors
-
Zhao, J., You, Z., A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14 (2014), 12497–12510.
-
(2014)
Sensors
, vol.14
, pp. 12497-12510
-
-
Zhao, J.1
You, Z.2
-
190
-
-
84924282220
-
Powerful curved piezoelectric generator for wearable applications
-
Jung, W.-S., Lee, M.-J., Kang, M.-G., Moon, H.G., Yoon, S.-J., Baek, S.-H., Kang, C.-Y., Powerful curved piezoelectric generator for wearable applications. Nano Energy 13 (2015), 174–181.
-
(2015)
Nano Energy
, vol.13
, pp. 174-181
-
-
Jung, W.-S.1
Lee, M.-J.2
Kang, M.-G.3
Moon, H.G.4
Yoon, S.-J.5
Baek, S.-H.6
Kang, C.-Y.7
-
191
-
-
84891781693
-
Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy
-
Daniels, A., Zhu, M., Tiwari, A., Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy. J. Phys. Conf. Ser., 476, 2013, 012047.
-
(2013)
J. Phys. Conf. Ser.
, vol.476
, pp. 012047
-
-
Daniels, A.1
Zhu, M.2
Tiwari, A.3
-
192
-
-
84907894709
-
Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism
-
Xie, L., Cai, M., Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism. Appl. Phys. Lett., 105, 2014, 143901.
-
(2014)
Appl. Phys. Lett.
, vol.105
, pp. 143901
-
-
Xie, L.1
Cai, M.2
-
193
-
-
85166864627
-
-
Design and optimization of a biomechanical energy harvesting device. in Power Electronics Specialists Conference. PESC 2008. IEEE. IEEE., 2008
-
Niu, P., Chapman, P., DiBerardino, L., and Hsiao-Wecksler, E. (2008). Design and optimization of a biomechanical energy harvesting device. in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE. IEEE.
-
(2008)
-
-
Niu, P.1
Chapman, P.2
DiBerardino, L.3
Hsiao-Wecksler, E.4
-
194
-
-
84947233802
-
Power approaches for implantable medical devices
-
Amar, A.B., Kouki, A.B., Cao, H., Power approaches for implantable medical devices. Sensors 15 (2015), 28889–28914.
-
(2015)
Sensors
, vol.15
, pp. 28889-28914
-
-
Amar, A.B.1
Kouki, A.B.2
Cao, H.3
-
195
-
-
85166793203
-
-
An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. in Biomedical Circuits and Systems Conference. BioCAS 2006. IEEE. IEEE., 2006
-
Bradley, P.D. (2006). An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. in Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE. IEEE.
-
(2006)
-
-
Bradley, P.D.1
-
196
-
-
10444220925
-
A very low-power CMOS mixed-signal IC for implantable pacemaker applications
-
Wong, L.S., Hossain, S., Ta, A., Edvinsson, J., Rivas, D.H., Naas, H., A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid State Circ. 39 (2004), 2446–2456.
-
(2004)
IEEE J. Solid State Circ.
, vol.39
, pp. 2446-2456
-
-
Wong, L.S.1
Hossain, S.2
Ta, A.3
Edvinsson, J.4
Rivas, D.H.5
Naas, H.6
-
197
-
-
13844296690
-
Digital technology for cardiac pacing
-
Padeletti, L., Barold, S.S., Digital technology for cardiac pacing. Am. J. Cardiol. 95 (2005), 479–482.
-
(2005)
Am. J. Cardiol.
, vol.95
, pp. 479-482
-
-
Padeletti, L.1
Barold, S.S.2
-
198
-
-
85166797604
-
-
-J. (2006). A 0.9-V 96-μW digital hearing aid chip with heterogeneous Σ−Δ DAC. in Proc. IEEE Symp. VLSI Circuits.
-
Kim, S., Cho, N., Song, S.-J., Kim, D., Kim, K., and Yoo, H.-J. (2006). A 0.9-V 96-μW digital hearing aid chip with heterogeneous Σ−Δ DAC. in Proc. IEEE Symp. VLSI Circuits.
-
-
-
Kim, S.1
Cho, N.2
Song, S.-J.3
Kim, D.4
Kim, K.5
Yoo, H.6
-
199
-
-
16444371132
-
An ultra-low-power programmable analog bionic ear processor
-
Sarpeshkar, R., Salthouse, C., Sit, J.J., Baker, M.W., Zhak, S.M., Lu, T.K., Turicchia, L., Balster, S., An ultra-low-power programmable analog bionic ear processor. IEEE Trans. Biomed. Eng. 52 (2005), 711–727.
-
(2005)
IEEE Trans. Biomed. Eng.
, vol.52
, pp. 711-727
-
-
Sarpeshkar, R.1
Salthouse, C.2
Sit, J.J.3
Baker, M.W.4
Zhak, S.M.5
Lu, T.K.6
Turicchia, L.7
Balster, S.8
-
200
-
-
77950811712
-
Mini drug pump for ophthalmic use
-
Saati, S., Lo, R., Li, P.Y., Meng, E., Varma, R., Humayun, M.S., Mini drug pump for ophthalmic use. Curr. Eye Res. 35 (2010), 192–201.
-
(2010)
Curr. Eye Res.
, vol.35
, pp. 192-201
-
-
Saati, S.1
Lo, R.2
Li, P.Y.3
Meng, E.4
Varma, R.5
Humayun, M.S.6
-
201
-
-
23844491146
-
Retinal prosthesis
-
Weiland, J.D., Liu, W., Humayun, M.S., Retinal prosthesis. Annu. Rev. Biomed. Eng. 7 (2005), 361–401.
-
(2005)
Annu. Rev. Biomed. Eng.
, vol.7
, pp. 361-401
-
-
Weiland, J.D.1
Liu, W.2
Humayun, M.S.3
-
202
-
-
2442708539
-
Wireless implantable microsystems: high-density electronic interfaces to the nervous system
-
Wise, K.D., Anderson, D., Hetke, J., Kipke, D., Najafi, K., Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92 (2004), 76–97.
-
(2004)
Proc. IEEE
, vol.92
, pp. 76-97
-
-
Wise, K.D.1
Anderson, D.2
Hetke, J.3
Kipke, D.4
Najafi, K.5
-
203
-
-
84871632664
-
Energy harvesting from the beating heart by a mass imbalance oscillation generator
-
Zurbuchen, A., Pfenniger, A., Stahel, A., Stoeck, C.T., Vandenberghe, S., Koch, V.M., Vogel, R., Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41 (2013), 131–141.
-
(2013)
Ann. Biomed. Eng.
, vol.41
, pp. 131-141
-
-
Zurbuchen, A.1
Pfenniger, A.2
Stahel, A.3
Stoeck, C.T.4
Vandenberghe, S.5
Koch, V.M.6
Vogel, R.7
-
205
-
-
0001916941
-
Cardiac image analysis: motion and deformation
-
I.M. Bankman Elsevier
-
Papademetris, X., Duncan, J.S., Cardiac image analysis: motion and deformation. Bankman, I.M., (eds.) Handbook of Medical Imaging, 2, 2000, Elsevier, 675–710.
-
(2000)
Handbook of Medical Imaging
, vol.2
, pp. 675-710
-
-
Papademetris, X.1
Duncan, J.S.2
-
206
-
-
84864264339
-
An active piezoelectric energy extraction method for pressure energy harvesting
-
Deterre, M., Lefeuvre, E., Dufour-Gergam, E., An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater. Struct., 21, 2012, 085004.
-
(2012)
Smart Mater. Struct.
, vol.21
, pp. 085004
-
-
Deterre, M.1
Lefeuvre, E.2
Dufour-Gergam, E.3
-
207
-
-
0026717554
-
Noninvasive measurement of diameter changes in the distal abdominal aorta in man
-
Länne, T., Stale, H., Bengtsson, H., Gustafsson, D., Bergqvist, D., Sonesson, B., Lecerof, H., Dahl, P., Noninvasive measurement of diameter changes in the distal abdominal aorta in man. Ultrasound Med. Biol. 18 (1992), 451–457.
-
(1992)
Ultrasound Med. Biol.
, vol.18
, pp. 451-457
-
-
Länne, T.1
Stale, H.2
Bengtsson, H.3
Gustafsson, D.4
Bergqvist, D.5
Sonesson, B.6
Lecerof, H.7
Dahl, P.8
-
208
-
-
0037308673
-
Shear stress depends on vascular territory: comparison between common carotid and brachial artery
-
Dammers, R., Stifft, F., Tordoir, J.H., Hameleers, J.M., Hoeks, A.P., Kitslaar, P.J., Shear stress depends on vascular territory: comparison between common carotid and brachial artery. J. Appl. Physiol. 94 (2003), 485–489.
-
(2003)
J. Appl. Physiol.
, vol.94
, pp. 485-489
-
-
Dammers, R.1
Stifft, F.2
Tordoir, J.H.3
Hameleers, J.M.4
Hoeks, A.P.5
Kitslaar, P.J.6
-
209
-
-
84856427647
-
Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
-
Karami, M.A., Inman, D.J., Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett., 100, 2012, 042901.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 042901
-
-
Karami, M.A.1
Inman, D.J.2
-
210
-
-
85166820600
-
-
Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations. in Active and Passive Smart Structures and Integrated Systems 2011. International Society for Optics and Photonics.
-
Karami, M.A., and Inman, D.J. (2011). Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations. in Active and Passive Smart Structures and Integrated Systems 2011. International Society for Optics and Photonics.
-
(2011)
-
-
Karami, M.A.1
Inman, D.J.2
-
211
-
-
85019629409
-
Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers
-
Ansari, M., Karami, M.A., Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Smart Mater. Struct., 26, 2017, 065001.
-
(2017)
Smart Mater. Struct.
, vol.26
, pp. 065001
-
-
Ansari, M.1
Karami, M.A.2
-
212
-
-
84940702775
-
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
-
Sharpes, N., Abdelkefi, A., Priya, S., Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters. Appl. Phys. Lett., 107, 2015, 093901.
-
(2015)
Appl. Phys. Lett.
, vol.107
, pp. 093901
-
-
Sharpes, N.1
Abdelkefi, A.2
Priya, S.3
-
213
-
-
84937818147
-
Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker
-
Alrashdan, M.H., Hamzah, A.A., Majlis, B., Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker. Microsystem Tech. 21 (2015), 1607–1617.
-
(2015)
Microsystem Tech.
, vol.21
, pp. 1607-1617
-
-
Alrashdan, M.H.1
Hamzah, A.A.2
Majlis, B.3
-
214
-
-
84893477161
-
Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
-
Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111 (2014), 1927–1932.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 1927-1932
-
-
Dagdeviren, C.1
Yang, B.D.2
Su, Y.3
Tran, P.L.4
Joe, P.5
Anderson, E.6
Xia, J.7
Doraiswamy, V.8
Dehdashti, B.9
Feng, X.10
-
215
-
-
84946780307
-
Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy
-
Lu, B., Chen, Y., Ou, D., Chen, H., Diao, L., Zhang, W., Zheng, J., Ma, W., Sun, L., Feng, X., Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Sci. Rep., 2015, 5.
-
(2015)
Sci. Rep.
, pp. 5
-
-
Lu, B.1
Chen, Y.2
Ou, D.3
Chen, H.4
Diao, L.5
Zhang, W.6
Zheng, J.7
Ma, W.8
Sun, L.9
Feng, X.10
-
216
-
-
84875844456
-
Layer transfer by controlled spalling
-
Bedell, S.W., Fogel, K., Lauro, P., Shahrjerdi, D., Ott, J.A., Sadana, D., Layer transfer by controlled spalling. J. Phys. D, 46, 2013, 152002.
-
(2013)
J. Phys. D
, vol.46
, pp. 152002
-
-
Bedell, S.W.1
Fogel, K.2
Lauro, P.3
Shahrjerdi, D.4
Ott, J.A.5
Sadana, D.6
-
217
-
-
85018874171
-
In vivo self-powered wireless transmission using biocompatible flexible energy harvesters
-
Kim, D.H., Shin, H.J., Lee, H., Jeong, C.K., Park, H., Hwang, G.-T., Lee, H.-Y., Joe, D.J., Han, J.H., Lee, S.H., et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater., 2017, 10.1002/adfm.201700341.
-
(2017)
Adv. Funct. Mater.
-
-
Kim, D.H.1
Shin, H.J.2
Lee, H.3
Jeong, C.K.4
Park, H.5
Hwang, G.-T.6
Lee, H.-Y.7
Joe, D.J.8
Han, J.H.9
Lee, S.H.10
-
218
-
-
84928372224
-
Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications
-
Hwang, G.T., Byun, M., Jeong, C.K., Lee, K.J., Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 4 (2015), 646–658.
-
(2015)
Adv. Healthc. Mater.
, vol.4
, pp. 646-658
-
-
Hwang, G.T.1
Byun, M.2
Jeong, C.K.3
Lee, K.J.4
-
219
-
-
79955920150
-
A shear mode piezoelectric energy harvester based on a pressurized water flow
-
Wang, D.-A., Liu, N.-Z., A shear mode piezoelectric energy harvester based on a pressurized water flow. Sensor. Actuator. Phys. 167 (2011), 449–458.
-
(2011)
Sensor. Actuator. Phys.
, vol.167
, pp. 449-458
-
-
Wang, D.-A.1
Liu, N.-Z.2
-
220
-
-
27144516311
-
Piezoelectric energy harvesting with a clamped circular plate: experimental study
-
Kim, S., Clark, W.W., Wang, Q.-M., Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16 (2005), 855–863.
-
(2005)
J. Intell. Mater. Syst. Struct.
, vol.16
, pp. 855-863
-
-
Kim, S.1
Clark, W.W.2
Wang, Q.-M.3
-
221
-
-
77953798193
-
Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms
-
Mo, C., Radziemski, L.J., Clark, W.W., Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms. Smart Mater. Struct., 19, 2010, 075010.
-
(2010)
Smart Mater. Struct.
, vol.19
, pp. 075010
-
-
Mo, C.1
Radziemski, L.J.2
Clark, W.W.3
-
222
-
-
19844362847
-
An investigation on piezoelectric energy harvesting for MEMS power sources
-
Sohn, J., Choi, S.B., Lee, D., An investigation on piezoelectric energy harvesting for MEMS power sources. J. Mech. Eng. Sci. 219 (2005), 429–436.
-
(2005)
J. Mech. Eng. Sci.
, vol.219
, pp. 429-436
-
-
Sohn, J.1
Choi, S.B.2
Lee, D.3
-
223
-
-
84901932100
-
Micro blood pressure energy harvester for intracardiac pacemaker
-
Deterre, M., Lefeuvre, E., Zhu, Y., Woytasik, M., Boutaud, B., Dal Molin, R., Micro blood pressure energy harvester for intracardiac pacemaker. J. Microelectromech. Syst. 23 (2014), 651–660.
-
(2014)
J. Microelectromech. Syst.
, vol.23
, pp. 651-660
-
-
Deterre, M.1
Lefeuvre, E.2
Zhu, Y.3
Woytasik, M.4
Boutaud, B.5
Dal Molin, R.6
-
224
-
-
84942021935
-
Percutaneous implantation of an entirely intracardiac leadless pacemaker
-
Reddy, V.Y., Exner, D.V., Cantillon, D.J., Doshi, R., Bunch, T.J., Tomassoni, G.F., Friedman, P.A., Estes, N.A. 3rd, Ip, J., Niazi, I., et al., LEADLESS II Study Investigators. Percutaneous implantation of an entirely intracardiac leadless pacemaker. N. Engl. J. Med. 373 (2015), 1125–1135.
-
(2015)
N. Engl. J. Med.
, vol.373
, pp. 1125-1135
-
-
Reddy, V.Y.1
Exner, D.V.2
Cantillon, D.J.3
Doshi, R.4
Bunch, T.J.5
Tomassoni, G.F.6
Friedman, P.A.7
Estes, N.A.8
Ip, J.9
Niazi, I.10
-
225
-
-
85166827869
-
-
An arterial cuff energy scavenger for implanted microsystems. in Bioinformatics and Biomedical Engineering. ICBBE 2008. The 2nd International Conference. 2008. IEEE.
-
Potkay, J.A., and Brooks K. An arterial cuff energy scavenger for implanted microsystems. in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference. 2008. IEEE.
-
(2008)
-
-
Potkay, J.A.1
Brooks, K.2
-
226
-
-
84921487900
-
A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies
-
Zhang, H., Zhang, X.-S., Cheng, X., Liu, Y., Han, M., Xue, X., Wang, S., Yang, F., Smith, A.S., Zhang, H., Xu, Z., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12 (2015), 296–304.
-
(2015)
Nano Energy
, vol.12
, pp. 296-304
-
-
Zhang, H.1
Zhang, X.-S.2
Cheng, X.3
Liu, Y.4
Han, M.5
Xue, X.6
Wang, S.7
Yang, F.8
Smith, A.S.9
Zhang, H.10
Xu, Z.11
-
227
-
-
84875060136
-
Wire troubleshooting and diagnosis: review and perspectives
-
Auzanneau, F., Wire troubleshooting and diagnosis: review and perspectives. Prog. Electromagn. Res. B 49 (2013), 253–279.
-
(2013)
Prog. Electromagn. Res. B
, vol.49
, pp. 253-279
-
-
Auzanneau, F.1
-
228
-
-
85016574760
-
Piezoelectric energy harvester for low engine vibrations
-
Khalatkar, A., Gupta, V., Piezoelectric energy harvester for low engine vibrations. J. Renew. Sustain. Energ., 9, 2017, 024701.
-
(2017)
J. Renew. Sustain. Energ.
, vol.9
, pp. 024701
-
-
Khalatkar, A.1
Gupta, V.2
-
229
-
-
84928526488
-
A nonlinear suspended energy harvester for a tire pressure monitoring system
-
Wang, Y.-J., Chen, C.-D., Lin, C.-C., Yu, J.-H., A nonlinear suspended energy harvester for a tire pressure monitoring system. Micromachines 6 (2015), 312–327.
-
(2015)
Micromachines
, vol.6
, pp. 312-327
-
-
Wang, Y.-J.1
Chen, C.-D.2
Lin, C.-C.3
Yu, J.-H.4
-
230
-
-
85016693901
-
Wideband electromagnetic energy harvesting from a rotating wheel
-
M. Lallart InTech
-
Wang, Y.-J., Shen, S.-C., Chen, C.-D., Wideband electromagnetic energy harvesting from a rotating wheel. Lallart, M., (eds.) Small-Scale Energy Harvesting, 2012, InTech, 10.5772/50739.
-
(2012)
Small-Scale Energy Harvesting
-
-
Wang, Y.-J.1
Shen, S.-C.2
Chen, C.-D.3
-
231
-
-
84881123009
-
A MEMS vibration energy harvester for automotive applications
-
van Schaijk, R., Elfrink, R., Oudenhoven, J., Pop, V., Wang, Z., Renaud, M., A MEMS vibration energy harvester for automotive applications. Proc. SPIE, 2013, 10.1117/12.2016916.
-
(2013)
Proc. SPIE
-
-
van Schaijk, R.1
Elfrink, R.2
Oudenhoven, J.3
Pop, V.4
Wang, Z.5
Renaud, M.6
-
232
-
-
84925740762
-
Piezoelectric energy harvesting from torsional vibration in internal combustion engines
-
Kim, G., Piezoelectric energy harvesting from torsional vibration in internal combustion engines. Int. J. Auto. Technol. 16 (2015), 645–651.
-
(2015)
Int. J. Auto. Technol.
, vol.16
, pp. 645-651
-
-
Kim, G.1
-
233
-
-
84879895149
-
Large-scale vibration energy harvesting
-
Zuo, L., Tang, X., Large-scale vibration energy harvesting. J. Intell. Mater. Syst. Struct. 24 (2013), 1405–1430.
-
(2013)
J. Intell. Mater. Syst. Struct.
, vol.24
, pp. 1405-1430
-
-
Zuo, L.1
Tang, X.2
-
234
-
-
84911365191
-
Vibration energy harvesting system for railroad safety based on running vehicles
-
Tianchen, Y., Jian, Y., Ruigang, S., Xiaowei, L., Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater. Struct., 23, 2014, 125046.
-
(2014)
Smart Mater. Struct.
, vol.23
, pp. 125046
-
-
Tianchen, Y.1
Jian, Y.2
Ruigang, S.3
Xiaowei, L.4
-
235
-
-
84988043508
-
Energy harvesting technologies for tire pressure monitoring systems
-
Bowen, C., Arafa, M., Energy harvesting technologies for tire pressure monitoring systems. Adv. Energy Mater., 5, 2015, 10.1002/aenm.201401787.
-
(2015)
Adv. Energy Mater.
, vol.5
-
-
Bowen, C.1
Arafa, M.2
-
236
-
-
84902271253
-
A comprehensive study on technologies of tyre monitoring systems and possible energy solutions
-
Kubba, A.E., Jiang, K., A comprehensive study on technologies of tyre monitoring systems and possible energy solutions. Sensors (Basel) 14 (2014), 10306–10345.
-
(2014)
Sensors (Basel)
, vol.14
, pp. 10306-10345
-
-
Kubba, A.E.1
Jiang, K.2
-
237
-
-
85166807795
-
-
Evaluation of energy harvesting concepts for tire pressure monitoring systems. Proceedings of Power MEMS
-
Löhndorf, M., Kvisterøy, T., Westby, E., and Halvorsen, E. (2007). Evaluation of energy harvesting concepts for tire pressure monitoring systems. Proceedings of Power MEMS, p. 331–334.
-
(2007)
, pp. 331-334
-
-
Löhndorf, M.1
Kvisterøy, T.2
Westby, E.3
Halvorsen, E.4
-
238
-
-
84927056053
-
Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer
-
Kubba, A.E., Behroozi, M., Olatunbosun, O.A., Anthony, C., Jiang, K., Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer. Tire Sci. Technol. 42 (2014), 16–34.
-
(2014)
Tire Sci. Technol.
, vol.42
, pp. 16-34
-
-
Kubba, A.E.1
Behroozi, M.2
Olatunbosun, O.A.3
Anthony, C.4
Jiang, K.5
-
239
-
-
85018484517
-
A strain-based method to estimate slip angle and tire working conditions for intelligent tires using fuzzy logic
-
Garcia-Pozuelo, D., Yunta, J., Olatunbosun, O., Yang, X., Diaz, V., A strain-based method to estimate slip angle and tire working conditions for intelligent tires using fuzzy logic. Sensors (Basel), 17, 2017, 874.
-
(2017)
Sensors (Basel)
, vol.17
, pp. 874
-
-
Garcia-Pozuelo, D.1
Yunta, J.2
Olatunbosun, O.3
Yang, X.4
Diaz, V.5
-
240
-
-
84955661712
-
OPTYRE—A new technology for tire monitoring: Evidence of contact patch phenomena
-
Roveri, N., Pepe, G., Carcaterra, A., OPTYRE—A new technology for tire monitoring: Evidence of contact patch phenomena. Mech. Syst. Signal Process. 66 (2016), 793–810.
-
(2016)
Mech. Syst. Signal Process.
, vol.66
, pp. 793-810
-
-
Roveri, N.1
Pepe, G.2
Carcaterra, A.3
-
241
-
-
84938355530
-
Rolling deformation of truck tires: measurement and analysis using a tire sensing approach
-
Xiong, Y., Tuononen, A., Rolling deformation of truck tires: measurement and analysis using a tire sensing approach. J. Terramech. 61 (2015), 33–42.
-
(2015)
J. Terramech.
, vol.61
, pp. 33-42
-
-
Xiong, Y.1
Tuononen, A.2
-
242
-
-
84907892235
-
A laser-based sensor system for tire tread deformation measurement
-
Xiong, Y., Tuononen, A., A laser-based sensor system for tire tread deformation measurement. Meas. Sci. Tech., 25, 2014, 115103.
-
(2014)
Meas. Sci. Tech.
, vol.25
, pp. 115103
-
-
Xiong, Y.1
Tuononen, A.2
-
243
-
-
46249126098
-
Optical position detection to measure tyre carcass deflections
-
Tuononen, A.J., Optical position detection to measure tyre carcass deflections. Vehicle Syst. Dyn. 46 (2008), 471–481.
-
(2008)
Vehicle Syst. Dyn.
, vol.46
, pp. 471-481
-
-
Tuononen, A.J.1
-
244
-
-
84922918108
-
Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer
-
Matilainen, M., Tuononen, A., Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer. Mech. Syst. Signal Process. 52 (2015), 548–558.
-
(2015)
Mech. Syst. Signal Process.
, vol.52
, pp. 548-558
-
-
Matilainen, M.1
Tuononen, A.2
-
245
-
-
85043517481
-
An investigation of intelligent tires using multiscale modeling of cord-rubber composites
-
Behroozinia, P., Taheri, S., Mirzaeifar, R., An investigation of intelligent tires using multiscale modeling of cord-rubber composites. Mech. Base. Des. Struct. Mach., 2017, 1–16.
-
(2017)
Mech. Base. Des. Struct. Mach.
, pp. 1-16
-
-
Behroozinia, P.1
Taheri, S.2
Mirzaeifar, R.3
-
246
-
-
85166838334
-
-
Energy harvesting for tire pressure monitoring systems: design considerations. Proceedings of Power MEMS + MicroMEMS, Sendai, Japan:.
-
Roundy, S. (2008). Energy harvesting for tire pressure monitoring systems: design considerations. Proceedings of Power MEMS + MicroMEMS, Sendai, Japan: p. 9–12.
-
(2008)
, pp. 9-12
-
-
Roundy, S.1
-
247
-
-
85166870143
-
-
Tire tread deformation sensor and energy harvester development for 'smart Tire'applications. in Proc. SPIE.
-
Moon, K.S., Liang, H., Yi, J., and Mika, B. (2007). Tire tread deformation sensor and energy harvester development for 'smart Tire'applications. in Proc. SPIE.
-
(2007)
-
-
Moon, K.S.1
Liang, H.2
Yi, J.3
Mika, B.4
-
248
-
-
85166826790
-
-
Battery-less piezoceramics mode energy harvesting for automobile TPMS. in ASIC. ASICON'09. IEEE 8th International Conference. 2009. IEEE.
-
Wu, L., Wang, Y., Jia, C., and Zhang, C. Battery-less piezoceramics mode energy harvesting for automobile TPMS. in ASIC, 2009. ASICON'09. IEEE 8th International Conference. 2009. IEEE.
-
(2009)
-
-
Wu, L.1
Wang, Y.2
Jia, C.3
Zhang, C.4
-
249
-
-
84880526885
-
Piezoelectric energy harvesting for tyre pressure measurement applications
-
Mak, K.H., McWilliam, S., Popov, A.A., Piezoelectric energy harvesting for tyre pressure measurement applications. J. Automobile Eng. 227 (2013), 842–852.
-
(2013)
J. Automobile Eng.
, vol.227
, pp. 842-852
-
-
Mak, K.H.1
McWilliam, S.2
Popov, A.A.3
-
250
-
-
85166825080
-
-
van de Molengraft, J., Pop, V., Vullers, R.J.M., Renaud, M., and van Schaijk, R. (2011). Shock induced energy harvesting with a MEMS harvester for automotive applications. in Electron Devices Meeting (IEDM) IEEE International. IEEE.
-
Elfrink, R., Matova, S., de Nooijer, C., Jambunathan, M., Goedbloed, M., van de Molengraft, J., Pop, V., Vullers, R.J.M., Renaud, M., and van Schaijk, R. (2011). Shock induced energy harvesting with a MEMS harvester for automotive applications. in Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE.
-
(2011)
-
-
Elfrink, R.1
Matova, S.2
de Nooijer, C.3
Jambunathan, M.4
Goedbloed, M.5
-
251
-
-
79951682551
-
Vibration energy harvesting device based on asymmetric air-spaced cantilevers for tire pressure monitoring system
-
Zheng, Q., Tu, H., Agee, A., Xu, Y., Vibration energy harvesting device based on asymmetric air-spaced cantilevers for tire pressure monitoring system. Proceedings of Power MEMS, 2009, 403–406.
-
(2009)
Proceedings of Power MEMS
, pp. 403-406
-
-
Zheng, Q.1
Tu, H.2
Agee, A.3
Xu, Y.4
-
252
-
-
84991798447
-
Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance
-
Zhang, Y., Zheng, R., Shimono, K., Kaizuka, T., Nakano, K., Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Sensors, 16, 2016, 1727.
-
(2016)
Sensors
, vol.16
, pp. 1727
-
-
Zhang, Y.1
Zheng, R.2
Shimono, K.3
Kaizuka, T.4
Nakano, K.5
-
253
-
-
84867853882
-
Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires
-
Singh, K.B., Bedekar, V., Taheri, S., Priya, S., Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires. Mechatronics 22 (2012), 970–988.
-
(2012)
Mechatronics
, vol.22
, pp. 970-988
-
-
Singh, K.B.1
Bedekar, V.2
Taheri, S.3
Priya, S.4
-
254
-
-
85027947490
-
Broadening the frequency bandwidth of a tire-embedded piezoelectric-based energy harvesting system using coupled linear resonating structure
-
Sadeqi, S., Arzanpour, S., Hajikolaei, K.H., Broadening the frequency bandwidth of a tire-embedded piezoelectric-based energy harvesting system using coupled linear resonating structure. IEEE/ASME Trans. Mechatronics 20 (2015), 2085–2094.
-
(2015)
IEEE/ASME Trans. Mechatronics
, vol.20
, pp. 2085-2094
-
-
Sadeqi, S.1
Arzanpour, S.2
Hajikolaei, K.H.3
-
255
-
-
85011843840
-
Practical design of an energy harvester considering wheel rotation for powering intelligent tire systems
-
Zhu, B., Han, J., Zhao, J., Deng, W., Practical design of an energy harvester considering wheel rotation for powering intelligent tire systems. J. Electron. Mater. 46 (2017), 2483–2493.
-
(2017)
J. Electron. Mater.
, vol.46
, pp. 2483-2493
-
-
Zhu, B.1
Han, J.2
Zhao, J.3
Deng, W.4
-
256
-
-
55349089888
-
Enhanced vibrational energy harvesting using nonlinear stochastic resonance
-
McInnes, C., Gorman, D., Cartmell, M.P., Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318 (2008), 655–662.
-
(2008)
J. Sound Vib.
, vol.318
, pp. 655-662
-
-
McInnes, C.1
Gorman, D.2
Cartmell, M.P.3
-
257
-
-
84898825794
-
An application of stochastic resonance for energy harvesting in a bistable vibrating system
-
Zheng, R., Nakano, K., Hu, H., Su, D., Cartmell, M.P., An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound Vib. 333 (2014), 2568–2587.
-
(2014)
J. Sound Vib.
, vol.333
, pp. 2568-2587
-
-
Zheng, R.1
Nakano, K.2
Hu, H.3
Su, D.4
Cartmell, M.P.5
-
258
-
-
0442296491
-
Stochastic resonance
-
Wellens, T., Shatokhin, V., Buchleitner, A., Stochastic resonance. Rep. Progr. Phys., 67, 2003, 45.
-
(2003)
Rep. Progr. Phys.
, vol.67
, pp. 45
-
-
Wellens, T.1
Shatokhin, V.2
Buchleitner, A.3
-
259
-
-
85166870559
-
-
A new approach of a piezoelectric vibration-based power generator to supply next generation tire sensor systems. in Sensors IEEE. IEEE., 2007
-
Keck, M. (2007). A new approach of a piezoelectric vibration-based power generator to supply next generation tire sensor systems. in Sensors, 2007 IEEE. IEEE.
-
(2007)
-
-
Keck, M.1
-
260
-
-
85166869511
-
-
-W. (2016). Energy harvesting system for intelligent tyre sensors. in Intelligent Vehicles Symposium (IV) IEEE. IEEE.
-
Jousimaa, O.J., Parmar, M., and Lee, D.-W. (2016). Energy harvesting system for intelligent tyre sensors. in Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE.
-
(2016)
-
-
Jousimaa, O.J.1
Parmar, M.2
Lee, D.3
-
261
-
-
84901430077
-
A seesaw-structured energy harvester with superwide bandwidth for TPMS application
-
Wu, X., Parmar, M., Lee, D.-W., A seesaw-structured energy harvester with superwide bandwidth for TPMS application. IEEE/ASME Trans. Mechatronics 19 (2014), 1514–1522.
-
(2014)
IEEE/ASME Trans. Mechatronics
, vol.19
, pp. 1514-1522
-
-
Wu, X.1
Parmar, M.2
Lee, D.-W.3
-
262
-
-
85166873014
-
-
Harvesting energy from vehicle wheels. in Solid-State Sensors, Actuators and Microsystems Conference. TRANSDUCERS 2009. IEEE., 2009
-
Manla, G., White, N., and Tudor, J. (2009). Harvesting energy from vehicle wheels. in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. IEEE.
-
(2009)
-
-
Manla, G.1
White, N.2
Tudor, J.3
-
263
-
-
85166870006
-
-
Non-contact frequency-up-conversion energy harvester for durable & broad-band automotive TPMS application. in Micro Electro Mechanical Systems (MEMS) IEEE 25th International Conference. 2012. IEEE.
-
Tang, Q., Xia, X., and Li, X. Non-contact frequency-up-conversion energy harvester for durable & broad-band automotive TPMS application. in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference. 2012. IEEE.
-
(2012)
-
-
Tang, Q.1
Xia, X.2
Li, X.3
-
264
-
-
84907215852
-
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
-
Roundy, S., Tola, J., Energy harvester for rotating environments using offset pendulum and nonlinear dynamics. Smart Mater. Struct., 23, 2014, 105004.
-
(2014)
Smart Mater. Struct.
, vol.23
, pp. 105004
-
-
Roundy, S.1
Tola, J.2
-
265
-
-
84864586173
-
Battery-and wire-less tire pressure measurement systems (TPMS) sensor
-
Makki, N., Pop-Iliev, R., Battery-and wire-less tire pressure measurement systems (TPMS) sensor. Microsystem Tech. 18 (2012), 1201–1212.
-
(2012)
Microsystem Tech.
, vol.18
, pp. 1201-1212
-
-
Makki, N.1
Pop-Iliev, R.2
-
266
-
-
79960538939
-
Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor
-
Makki, N., Pop-Iliev, R., Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor. Proc. SPIE, 2011, 10.1117/12.887112.
-
(2011)
Proc. SPIE
-
-
Makki, N.1
Pop-Iliev, R.2
-
267
-
-
85166815922
-
-
Pneumatic tire-based piezoelectric power generation. in Proc. SPIE Vol
-
Makki, N., and Pop-Iliev, R. Pneumatic tire-based piezoelectric power generation. in Proc. SPIE Vol. 2011.
-
(2011)
-
-
Makki, N.1
Pop-Iliev, R.2
-
268
-
-
84555218425
-
Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites
-
van den Ende, D.A., Van de Wiel, H., Groen, W., Van der Zwaag, S., Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites. Smart Mater. Struct., 21, 2011, 015011.
-
(2011)
Smart Mater. Struct.
, vol.21
, pp. 015011
-
-
van den Ende, D.A.1
Van de Wiel, H.2
Groen, W.3
Van der Zwaag, S.4
-
269
-
-
3042787287
-
Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion
-
University of California
-
Roundy, S.J., Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. 2003, University of California.
-
(2003)
-
-
Roundy, S.J.1
-
270
-
-
0031678155
-
Dielectric properties of dielectrophoretically assembled particulate-polymer composites
-
Bowen, C., Newnham, R., Randall, C., Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 13 (1998), 205–210.
-
(1998)
J. Mater. Res.
, vol.13
, pp. 205-210
-
-
Bowen, C.1
Newnham, R.2
Randall, C.3
-
271
-
-
84888156934
-
Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires
-
Lee, J., Choi, B., Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. Energ. Convers. Manag. 78 (2014), 32–38.
-
(2014)
Energ. Convers. Manag.
, vol.78
, pp. 32-38
-
-
Lee, J.1
Choi, B.2
-
272
-
-
84873339278
-
Low power wireless sensor network for building monitoring
-
Torfs, T., Sterken, T., Brebels, S., Santana, J., van den Hoven, R., Spiering, V., Bertsch, N., Trapani, D., Zonta, D., Low power wireless sensor network for building monitoring. IEEE Sensors J. 13 (2013), 909–915.
-
(2013)
IEEE Sensors J.
, vol.13
, pp. 909-915
-
-
Torfs, T.1
Sterken, T.2
Brebels, S.3
Santana, J.4
van den Hoven, R.5
Spiering, V.6
Bertsch, N.7
Trapani, D.8
Zonta, D.9
-
273
-
-
77952547401
-
Acoustic emission monitoring of bridges: review and case studies
-
Nair, A., Cai, C., Acoustic emission monitoring of bridges: review and case studies. Eng. Struct. 32 (2010), 1704–1714.
-
(2010)
Eng. Struct.
, vol.32
, pp. 1704-1714
-
-
Nair, A.1
Cai, C.2
-
274
-
-
85166816123
-
-
A survey of applications of wireless sensors and wireless sensor networks. in Intelligent Control. Proceedings of the 2005 IEEE International Symposium on, Mediterranean Conference on Control and Automation. IEEE., 2005
-
Arampatzis, T., Lygeros, J, and Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. in Intelligent Control, 2005. Proceedings of the 2005 IEEE International Symposium on, Mediterranean Conference on Control and Automation. IEEE.
-
(2005)
-
-
Arampatzis, T.1
Lygeros, J.2
Manesis, S.3
-
275
-
-
85166871628
-
-
The smart home concept: our immediate future. in E-Learning in Industrial Electronics 1ST IEEE International Conference on. 2006. IEEE.
-
Ricquebourg, V., Menga, D., Durand, D., Marhic, B., Delahoche, L., and Loge, C. The smart home concept: our immediate future. in E-Learning in Industrial Electronics, 2006 1ST IEEE International Conference on. 2006. IEEE.
-
(2006)
-
-
Ricquebourg, V.1
Menga, D.2
Durand, D.3
Marhic, B.4
Delahoche, L.5
Loge, C.6
-
276
-
-
84947291002
-
Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors
-
Kaur, N., Bhalla, S., Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors. J. Energy Eng., 141, 2014, D4014001.
-
(2014)
J. Energy Eng.
, vol.141
, pp. D4014001
-
-
Kaur, N.1
Bhalla, S.2
-
277
-
-
77951578625
-
Energy harvesting and wireless energy transmission for embedded SHM sensor nodes
-
Farinholt, K.M., Miller, N., Sifuentes, W., MacDonald, J., Park, G., Farrar, C.R., Energy harvesting and wireless energy transmission for embedded SHM sensor nodes. Struct. Health Monit. 9 (2010), 269–280.
-
(2010)
Struct. Health Monit.
, vol.9
, pp. 269-280
-
-
Farinholt, K.M.1
Miller, N.2
Sifuentes, W.3
MacDonald, J.4
Park, G.5
Farrar, C.R.6
-
278
-
-
84891378046
-
Review of the application of energy harvesting in buildings
-
Matiko, J., Grabham, N., Beeby, S., Tudor, M., Review of the application of energy harvesting in buildings. Meas. Sci. Tech., 25, 2013, 012002.
-
(2013)
Meas. Sci. Tech.
, vol.25
, pp. 012002
-
-
Matiko, J.1
Grabham, N.2
Beeby, S.3
Tudor, M.4
-
279
-
-
0042136530
-
Dynamic characteristics of five tall buildings during strong and low-amplitude motions
-
Çlelebi, M., Phan, L., Marshall, R., Dynamic characteristics of five tall buildings during strong and low-amplitude motions. Struct. Des. Tall Spec. 2 (1993), 1–15.
-
(1993)
Struct. Des. Tall Spec.
, vol.2
, pp. 1-15
-
-
Çlelebi, M.1
Phan, L.2
Marshall, R.3
-
280
-
-
84884576458
-
Piezoelectric energy harvesting from traffic-induced bridge vibrations
-
Peigney, M., Siegert, D., Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct., 22, 2013, 095019.
-
(2013)
Smart Mater. Struct.
, vol.22
, pp. 095019
-
-
Peigney, M.1
Siegert, D.2
-
281
-
-
84956891612
-
Review of energy harvesters utilizing bridge vibrations
-
Khan, F.U., Ahmad, I., Review of energy harvesters utilizing bridge vibrations. Shock Vib., 2016, 10.1155/2016/1340402.
-
(2016)
Shock Vib.
-
-
Khan, F.U.1
Ahmad, I.2
-
282
-
-
85166816668
-
-
Energy harvesting from building seismic isolation with multi-mode resonant shunt circuits. in ASME 2014 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers).
-
Cao, M., and Zuo, L. (2014). Energy harvesting from building seismic isolation with multi-mode resonant shunt circuits. in ASME 2014 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers).
-
(2014)
-
-
Cao, M.1
Zuo, L.2
-
283
-
-
84990026455
-
Electromagnetic energy harvesting from structural vibrations during earthquakes
-
Shen, W., Zhu, S., Zhu, H., Xu, Y., Electromagnetic energy harvesting from structural vibrations during earthquakes. Smart Struct. Syst. 18 (2016), 449–470.
-
(2016)
Smart Struct. Syst.
, vol.18
, pp. 449-470
-
-
Shen, W.1
Zhu, S.2
Zhu, H.3
Xu, Y.4
-
284
-
-
84873192221
-
Novel miniature airflow energy harvester for wireless sensing applications in buildings
-
Zhu, D., Beeby, S.P., Tudor, M.J., White, N.M., Harris, N.R., Novel miniature airflow energy harvester for wireless sensing applications in buildings. IEEE Sensors J. 13 (2013), 691–700.
-
(2013)
IEEE Sensors J.
, vol.13
, pp. 691-700
-
-
Zhu, D.1
Beeby, S.P.2
Tudor, M.J.3
White, N.M.4
Harris, N.R.5
-
285
-
-
85166805628
-
-
I. Ahmad. Vibration-based electromagnetic type energy harvester for bridge monitoring sensor application. in Emerging Technologies (ICET) International Conference. 2014. IEEE.
-
Khan, F.U. and I. Ahmad. Vibration-based electromagnetic type energy harvester for bridge monitoring sensor application. in Emerging Technologies (ICET), 2014 International Conference. 2014. IEEE.
-
(2014)
-
-
Khan, F.U.1
-
286
-
-
85166821862
-
-
Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. in SENSORS IEEE. ∖, 2016
-
Orfei, F., Mezzetti, C.B., and Cottone, F. (2016). Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. in SENSORS, 2016 IEEE. ∖.
-
(2016)
-
-
Orfei, F.1
Mezzetti, C.B.2
Cottone, F.3
-
287
-
-
84952631191
-
Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems
-
Takeya, K., Sasaki, E., Kobayashi, Y., Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems. J. Sound Vib. 361 (2016), 50–65.
-
(2016)
J. Sound Vib.
, vol.361
, pp. 50-65
-
-
Takeya, K.1
Sasaki, E.2
Kobayashi, Y.3
-
288
-
-
85166871528
-
-
Developing innovative energy harvesting approaches for infrastructure health monitoring systems. in Proceedings of the 37th Design Automation Conference, Parts A and B.
-
McEvoy, T., Dierks, E., Weaver, J., Inamdar, S., Zimowski, K., Wood, K.L., Crawford, R.H., and Jensen, D. (2011). Developing innovative energy harvesting approaches for infrastructure health monitoring systems. in Proceedings of the 37th Design Automation Conference, Parts A and B.
-
(2011)
-
-
McEvoy, T.1
Dierks, E.2
Weaver, J.3
Inamdar, S.4
Zimowski, K.5
Wood, K.L.6
Crawford, R.H.7
Jensen, D.8
-
289
-
-
79961209980
-
Micro power generator for harvesting low-frequency and nonperiodic vibrations
-
Galchev, T., Kim, H., Najafi, K., Micro power generator for harvesting low-frequency and nonperiodic vibrations. J. Microelectromech. Syst. 20 (2011), 852–866.
-
(2011)
J. Microelectromech. Syst.
, vol.20
, pp. 852-866
-
-
Galchev, T.1
Kim, H.2
Najafi, K.3
-
290
-
-
85166855995
-
-
L. Zuo. (2011). Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. in American Control Conference (ACC). IEEE.
-
Tang, X. and L. Zuo. (2011). Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. in American Control Conference (ACC), 2011. IEEE.
-
(2011)
-
-
Tang, X.1
-
291
-
-
80053591104
-
Harvesting traffic-induced vibrations for structural health monitoring of bridges
-
Galchev, T., McCullagh, J., Peterson, R., Najafi, K., Harvesting traffic-induced vibrations for structural health monitoring of bridges. J. Micromech. Microeng., 21, 2011, 104005.
-
(2011)
J. Micromech. Microeng.
, vol.21
, pp. 104005
-
-
Galchev, T.1
McCullagh, J.2
Peterson, R.3
Najafi, K.4
-
292
-
-
84905233824
-
Long-term testing of a vibration harvesting system for the structural health monitoring of bridges
-
McCullagh, J., Galchev, T., Peterson, R., Gordenker, R., Zhang, Y., Lynch, J., Najafi, K., Long-term testing of a vibration harvesting system for the structural health monitoring of bridges. Sensor. Actuator. Phys. 217 (2014), 139–150.
-
(2014)
Sensor. Actuator. Phys.
, vol.217
, pp. 139-150
-
-
McCullagh, J.1
Galchev, T.2
Peterson, R.3
Gordenker, R.4
Zhang, Y.5
Lynch, J.6
Najafi, K.7
-
293
-
-
79960584003
-
An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node
-
Jung, H.-J., Kim, I.-H., Jang, S.-J., An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node. Smart Mater. Struct., 20, 2011, 075001.
-
(2011)
Smart Mater. Struct.
, vol.20
, pp. 075001
-
-
Jung, H.-J.1
Kim, I.-H.2
Jang, S.-J.3
-
294
-
-
83455235342
-
Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations
-
Erturk, A., Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations. J. Intell. Mater. Syst. Struct. 22 (2011), 1959–1973.
-
(2011)
J. Intell. Mater. Syst. Struct.
, vol.22
, pp. 1959-1973
-
-
Erturk, A.1
-
295
-
-
82955213626
-
Analysis of energy harvesters for highway bridges
-
Ali, S.F., Friswell, M., Adhikari, S., Analysis of energy harvesters for highway bridges. J. Intell. Mater. Syst. Struct. 22 (2011), 1929–1938.
-
(2011)
J. Intell. Mater. Syst. Struct.
, vol.22
, pp. 1929-1938
-
-
Ali, S.F.1
Friswell, M.2
Adhikari, S.3
-
296
-
-
84905923132
-
Piezoelectric-based energy harvesting in bridge systems
-
Zhang, Y., Cai, S.C., Deng, L., Piezoelectric-based energy harvesting in bridge systems. J. Intell. Mater. Syst. Struct. 25 (2014), 1414–1428.
-
(2014)
J. Intell. Mater. Syst. Struct.
, vol.25
, pp. 1414-1428
-
-
Zhang, Y.1
Cai, S.C.2
Deng, L.3
-
297
-
-
84882376468
-
Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass
-
Xie, X., Wu, N., Yuen, K.V., Wang, Q., Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass. Int. J. Eng. Sci. 72 (2013), 98–106.
-
(2013)
Int. J. Eng. Sci.
, vol.72
, pp. 98-106
-
-
Xie, X.1
Wu, N.2
Yuen, K.V.3
Wang, Q.4
-
298
-
-
84983554863
-
Effect of road surface, vehicle, and device characteristics on energy harvesting from bridge–vehicle interactions
-
Cahill, P., Jaksic, V., Keane, J., O'Sullivan, A., Mathewson, A., Ali, S.F., Pakrashi, V., Effect of road surface, vehicle, and device characteristics on energy harvesting from bridge–vehicle interactions. Comput. Aided Civ. Infrastruct. Eng. 31 (2016), 921–935.
-
(2016)
Comput. Aided Civ. Infrastruct. Eng.
, vol.31
, pp. 921-935
-
-
Cahill, P.1
Jaksic, V.2
Keane, J.3
O'Sullivan, A.4
Mathewson, A.5
Ali, S.F.6
Pakrashi, V.7
-
299
-
-
84906253246
-
Energy harvesting from train-induced response in bridges
-
Cahill, P., Nuallain, N.A.N., Jackson, N., Mathewson, A., Karoumi, R., Pakrashi, V., Energy harvesting from train-induced response in bridges. J. Bridge Eng., 19, 2014, 04014034.
-
(2014)
J. Bridge Eng.
, vol.19
, pp. 04014034
-
-
Cahill, P.1
Nuallain, N.A.N.2
Jackson, N.3
Mathewson, A.4
Karoumi, R.5
Pakrashi, V.6
-
300
-
-
84990973641
-
Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles
-
Karimi, M., Karimi, A., Tikani, R., Ziaei-Rad, S., Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles. Int. J. Mech. Sci. 119 (2016), 1–11.
-
(2016)
Int. J. Mech. Sci.
, vol.119
, pp. 1-11
-
-
Karimi, M.1
Karimi, A.2
Tikani, R.3
Ziaei-Rad, S.4
-
301
-
-
85045545369
-
Multiresonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications
-
Bhaskaran, P.R., Rathnam, J.D., Koilmani, S., Subramanian, K., Multiresonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications. Smart Mater. Res., 2017, 2017, 10.1155/2017/6084309.
-
(2017)
Smart Mater. Res.
, vol.2017
-
-
Bhaskaran, P.R.1
Rathnam, J.D.2
Koilmani, S.3
Subramanian, K.4
-
302
-
-
84983616346
-
Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge
-
Maruccio, C., Quaranta, G., DeLorenzis, L., Monti, G., Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge. Smart Mater. Struct., 25, 2016, 085040.
-
(2016)
Smart Mater. Struct.
, vol.25
, pp. 085040
-
-
Maruccio, C.1
Quaranta, G.2
DeLorenzis, L.3
Monti, G.4
-
303
-
-
70350643627
-
Robust segment-type energy harvester and its application to a wireless sensor
-
Lee, S., Youn, B.D., Jung, B.C., Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater. Struct., 18, 2009, 095021.
-
(2009)
Smart Mater. Struct.
, vol.18
, pp. 095021
-
-
Lee, S.1
Youn, B.D.2
Jung, B.C.3
-
304
-
-
84870907415
-
Tunable energy harvesting from ambient vibrations in civil structures
-
Rhimi, M., Lajnef, N., Tunable energy harvesting from ambient vibrations in civil structures. J. Energy Eng. 138 (2012), 185–193.
-
(2012)
J. Energy Eng.
, vol.138
, pp. 185-193
-
-
Rhimi, M.1
Lajnef, N.2
-
305
-
-
33748854828
-
Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload
-
Leland, E.S., Wright, P.K., Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct., 15, 2006, 1413.
-
(2006)
Smart Mater. Struct.
, vol.15
, pp. 1413
-
-
Leland, E.S.1
Wright, P.K.2
-
306
-
-
79955884815
-
Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system
-
Kim, S.-H., Ahn, J.-H., Chung, H.-M., Kang, H.-W., Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system. Sensor. Actuator. Phys. 167 (2011), 468–483.
-
(2011)
Sensor. Actuator. Phys.
, vol.167
, pp. 468-483
-
-
Kim, S.-H.1
Ahn, J.-H.2
Chung, H.-M.3
Kang, H.-W.4
-
307
-
-
84954469397
-
Energy harvesting from high-rise buildings by a piezoelectric harvester device
-
Xie, X., Wang, Q., Wang, S., Energy harvesting from high-rise buildings by a piezoelectric harvester device. Energy 93 (2015), 1345–1352.
-
(2015)
Energy
, vol.93
, pp. 1345-1352
-
-
Xie, X.1
Wang, Q.2
Wang, S.3
-
308
-
-
84961125349
-
Design of a piezoelectric harvester fixed under the roof of a high-rise building
-
Xie, X., Wang, Q., Design of a piezoelectric harvester fixed under the roof of a high-rise building. Eng. Struct. 117 (2016), 1–9.
-
(2016)
Eng. Struct.
, vol.117
, pp. 1-9
-
-
Xie, X.1
Wang, Q.2
|