메뉴 건너뛰기




Volumn 108, Issue 5, 2018, Pages 616-619

The C-word: Scientific euphemisms do not improve causal inference from observational data

Author keywords

[No Author keywords available]

Indexed keywords

DATA ANALYSIS; ERROR; HUMAN; NOTE; CAUSALITY; MEDICAL RESEARCH; OBSERVATIONAL STUDY;

EID: 85045006911     PISSN: 00900036     EISSN: 15410048     Source Type: Journal    
DOI: 10.2105/AJPH.2018.304337     Document Type: Note
Times cited : (364)

References (19)
  • 1
    • 85045014212 scopus 로고    scopus 로고
    • The use of cause-and-effect language in the JAMA Network journals
    • Accessed January 14, 2018
    • Ruich P. The use of cause-and-effect language in the JAMA Network journals. AMA Style Insider. 2017. Available at: http://amastyleinsider.com/2017/09/19/use-cause-effect-language-jama-network-journals. Accessed January 14, 2018.
    • (2017) AMA Style Insider
    • Ruich, P.1
  • 2
    • 77957187286 scopus 로고
    • Re: “Associations are not effects
    • Savitz DA. Re: “Associations are not effects.” Am J Epidemiol. 1991;134(4): 442-444.
    • (1991) Am J Epidemiol , vol.134 , Issue.4 , pp. 442-444
    • Savitz, D.A.1
  • 3
    • 0004292914 scopus 로고
    • Boston, MA: Little, Brown and Company
    • Rothman KJ. Modern Epidemiology. Boston, MA: Little, Brown and Company; 1986.
    • (1986) Modern Epidemiology
    • Rothman, K.J.1
  • 4
    • 84994130167 scopus 로고    scopus 로고
    • Does water kill? A call for less casual causal inferences
    • Hernán MA. Does water kill? A call for less casual causal inferences. Ann Epidemiol. 2016;26(10):674-680.
    • (2016) Ann Epidemiol , vol.26 , Issue.10 , pp. 674-680
    • Hernán, M.A.1
  • 5
    • 84994078612 scopus 로고    scopus 로고
    • There is no virtue in vagueness
    • Kaufman JS. There is no virtue in vagueness. Ann Epidemiol. 2016;26(10): 683-684.
    • (2016) Ann Epidemiol , vol.26 , Issue.10 , pp. 683-684
    • Kaufman, J.S.1
  • 6
    • 85017139895 scopus 로고    scopus 로고
    • Counter-factual causation and streetlamps. What is to be done?
    • Robins JM, Weissman M. Counter-factual causation and streetlamps. What is to be done? Int J Epidemiol. 2016;45(6): 1830-1835.
    • (2016) Int J Epidemiol , vol.45 , Issue.6 , pp. 1830-1835
    • Robins, J.M.1    Weissman, M.2
  • 7
    • 84964378350 scopus 로고    scopus 로고
    • Using big data to emulate a target trial when a randomized trial is not available
    • Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183(8):758-764.
    • (2016) Am J Epidemiol , vol.183 , Issue.8 , pp. 758-764
    • Hernán, M.A.1    Robins, J.M.2
  • 8
    • 0022569935 scopus 로고
    • The role of model selection in causal inference from nonexperimental data
    • Robins JM, Greenland S. The role of model selection in causal inference from nonexperimental data. Am J Epidemiol. 1986;123(3):392-402.
    • (1986) Am J Epidemiol , vol.123 , Issue.3 , pp. 392-402
    • Robins, J.M.1    Greenland, S.2
  • 10
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
    • Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155(2):176-184.
    • (2002) Am J Epidemiol , vol.155 , Issue.2 , pp. 176-184
    • Hernán, M.A.1    Hernández-Díaz, S.2    Werler, M.M.3    Mitchell, A.A.4
  • 11
    • 82055194473 scopus 로고    scopus 로고
    • Adjustments and their consequences-collapsibility analysis using graphical models
    • Greenland S, Pearl J. Adjustments and their consequences-collapsibility analysis using graphical models. Int Stat Rev. 2011; 79(3):401-426.
    • (2011) Int Stat Rev , vol.79 , Issue.3 , pp. 401-426
    • Greenland, S.1    Pearl, J.2
  • 12
    • 0019259065 scopus 로고
    • Control of confounding in the assessment of medical technology
    • Greenland S, Neutra R. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9(4): 361-367.
    • (1980) Int J Epidemiol , vol.9 , Issue.4 , pp. 361-367
    • Greenland, S.1    Neutra, R.2
  • 13
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37-48.
    • (1999) Epidemiology , vol.10 , Issue.1 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 14
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Pearl J, Robins JM. Confounding and collapsibility in causal inference. Stat Sci. 1999;14(1):29-46.
    • (1999) Stat Sci , vol.14 , Issue.1 , pp. 29-46
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 17
    • 84899874137 scopus 로고    scopus 로고
    • Commentary: A structural approach to Berkson’s fallacy and a guide to a history of opinions about it
    • Snoep JD, Morabia A, Hernández-Díaz S, Hernán MA, Vandenbroucke JP. Commentary: a structural approach to Berkson’s fallacy and a guide to a history of opinions about it. Int J Epidemiol. 2014; 43(2):515-521.
    • (2014) Int J Epidemiol , vol.43 , Issue.2 , pp. 515-521
    • Snoep, J.D.1    Morabia, A.2    Hernández-Díaz, S.3    Hernán, M.A.4    Vandenbroucke, J.P.5
  • 18
    • 84873627400 scopus 로고    scopus 로고
    • The table 2 fallacy: Presenting and interpreting confounder and modifier coefficients
    • Westreich D, Greenland S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol. 2013;177(4):292-298.
    • (2013) Am J Epidemiol , vol.177 , Issue.4 , pp. 292-298
    • Westreich, D.1    Greenland, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.