메뉴 건너뛰기




Volumn 7, Issue 3, 2018, Pages

Development of a QGIS plugin to obtain parameters and elements of plantation trees and vineyards with aerial photographs

Author keywords

Fractal analysis; Imagery classification; Imagery segmentation; Multispectral imagery; NDVI imagery; Orthophotos; Plantations; Plugin; Python; QGIS; Unmanned aerial vehicle

Indexed keywords


EID: 85044536448     PISSN: None     EISSN: 22209964     Source Type: Journal    
DOI: 10.3390/ijgi7030109     Document Type: Article
Times cited : (27)

References (46)
  • 3
    • 85010800172 scopus 로고    scopus 로고
    • France, Institut Geographique National. online: (accessed on 10 March 2016).
    • Pierrot-Deseilligny, M. Presentation, IGN/ENSG, France, Institut Geographique National. Available online: http://perso.telecomparistech.fr/~tupin/JTELE/PRES012009/Deseilligny.pdf (accessed on 10 March 2016).
    • Presentation, IGN/ENSG
    • Pierrot-Deseilligny, M.1
  • 5
    • 85020011522 scopus 로고    scopus 로고
    • Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods
    • [CrossRef]
    • Senthilnath, J.; Kandukuri, M.; Dokania, A.; Ramesh, K.N. Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput. Electron. Agric. 2017, 140, 8-24. [CrossRef]
    • (2017) Comput. Electron. Agric. , vol.140 , pp. 8-24
    • Senthilnath, J.1    Kandukuri, M.2    Dokania, A.3    Ramesh, K.N.4
  • 6
    • 85025164001 scopus 로고    scopus 로고
    • The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden
    • [CrossRef]
    • Malehmir, A.; Dynesius, L.; Paulusson, K.; Paulusson, A.; Johansson, H.; Bastani, M.; Wedmark, M.; Marsden, P. The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden. Lead. Edge 2017, 36, 552-557. [CrossRef]
    • (2017) Lead. Edge , vol.36 , pp. 552-557
    • Malehmir, A.1    Dynesius, L.2    Paulusson, K.3    Paulusson, A.4    Johansson, H.5    Bastani, M.6    Wedmark, M.7    Marsden, P.8
  • 7
    • 85012134244 scopus 로고    scopus 로고
    • Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry
    • [CrossRef]
    • Suh, J.; Choi, Y. Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ. Earth Sci. 2017, 76. [CrossRef]
    • (2017) Environ. Earth Sci. , pp. 76
    • Suh, J.1    Choi, Y.2
  • 8
    • 85034659033 scopus 로고    scopus 로고
    • Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia
    • [CrossRef]
    • McKenna, P.; Erskine, P.D.; Lechner, A.M.; Phinn, S. Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia. Int. J. Remote Sens. 2017, 38, 4244-4264. [CrossRef]
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 4244-4264
    • McKenna, P.1    Erskine, P.D.2    Lechner, A.M.3    Phinn, S.4
  • 9
    • 84994853595 scopus 로고    scopus 로고
    • Identifying tree canopy areas in undulating eucalyptus plantations using JSEG multi-scale segmentation and unmanned aerial vehicle near-infrared imagery
    • Kang, J.;Wang, L.; Chen, F.; Niu, Z. Identifying tree canopy areas in undulating eucalyptus plantations using JSEG multi-scale segmentation and unmanned aerial vehicle near-infrared imagery. Int. J. Remote Sens. 2017, 38, 2296-2312.
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 2296-2312
    • Kang, J.1    Wang, L.2    Chen, F.3    Niu, Z.4
  • 10
    • 84890942262 scopus 로고    scopus 로고
    • Unconstrained approach for isolating individual trees using high-resolution aerial imagery
    • [CrossRef]
    • Park, T.; Cho, J.; Lee, J.; Lee,W.; Choi, S.; Kwak, D.; Kim, M. Unconstrained approach for isolating individual trees using high-resolution aerial imagery. Int. J. Remote Sens. 2014, 35, 89-114. [CrossRef]
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 89-114
    • Park, T.1    Cho, J.2    Lee, J.3    Lee, W.4    Choi, S.5    Kwak, D.6    Kim, M.7
  • 11
    • 84994762062 scopus 로고    scopus 로고
    • Precision forestry: Trees counting in urban areas using visible imagery based on an unmanned aerial vehicle
    • [CrossRef]
    • Hassaan, O.; Nasir, A.K.; Roth, H.; Khan, M.F. Precision Forestry: Trees Counting in Urban Areas Using Visible Imagery based on an Unmanned Aerial Vehicle. IFAC-PapersOnLine 2016, 49-16, 16-21. [CrossRef]
    • (2016) IFAC-PapersOnLine , vol.49 , Issue.16 , pp. 16-21
    • Hassaan, O.1    Nasir, A.K.2    Roth, H.3    Khan, M.F.4
  • 13
    • 85034569741 scopus 로고    scopus 로고
    • Tree canopy detection and delineation in satellite images using probabilistic voting
    • [CrossRef]
    • Özcan, A.H.; Hisar, D.; Sayar, Y.; Ünsalan, C. Tree canopy detection and delineation in satellite images using probabilistic voting. Remote Sens. Lett. 2017, 8, 761-770. [CrossRef]
    • (2017) Remote Sens. Lett. , vol.8 , pp. 761-770
    • Özcan, A.H.1    Hisar, D.2    Sayar, Y.3    Ünsalan, C.4
  • 14
    • 13944264708 scopus 로고    scopus 로고
    • Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi-spectral remotely sensed data
    • [CrossRef]
    • Koukoulas, S.; Blacknurn, G.A.Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi-spectral remotely sensed data. Int. J. Remote Sens. 2007, 26, 431-455. [CrossRef]
    • (2007) Int. J. Remote Sens. , vol.26 , pp. 431-455
    • Koukoulas, S.1    Blacknurn, G.A.2
  • 15
    • 84861453683 scopus 로고    scopus 로고
    • Improving the precision of tree counting by combining tree detection with canopy delineation and classification on homogeneity guided smoothed high resolution (50 cm) multispectral airborne digital data
    • [CrossRef]
    • Katoh, M.; Gougeon, F.A. Improving the Precision of Tree Counting by Combining Tree Detection with Canopy Delineation and Classification on Homogeneity Guided Smoothed High Resolution (50 cm) Multispectral Airborne Digital Data. Remote Sens. 2012, 4, 1411-1424. [CrossRef]
    • (2012) Remote Sens. , vol.4 , pp. 1411-1424
    • Katoh, M.1    Gougeon, F.A.2
  • 16
    • 84982830466 scopus 로고    scopus 로고
    • Evaluating the performance of high-altitude aerial image-based digital surface models in detecting individual tree canopys inmature boreal forests
    • [CrossRef]
    • Tanhuanpaa, T.; Saarinen, N.; Kankare, V.; Nurminen, K.; Vastaranta, M.; Honkavaara, E.; Karjalainen, M.; Yu, X.; Holopainen, M.; Hyyppa, J. Evaluating the Performance of High-Altitude Aerial Image-Based Digital SurfaceModels in Detecting Individual Tree Canopys inMature Boreal Forests. Forests 2016, 7, 143. [CrossRef]
    • (2016) Forests , vol.7 , pp. 143
    • Tanhuanpaa, T.1    Saarinen, N.2    Kankare, V.3    Nurminen, K.4    Vastaranta, M.5    Honkavaara, E.6    Karjalainen, M.7    Yu, X.8    Holopainen, M.9    Hyyppa, J.10
  • 17
    • 84988405264 scopus 로고    scopus 로고
    • Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective
    • [CrossRef]
    • Thiel, C.; Schmullius, C. Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective. Int. J. Remote Sens. 2017, 38, 2411-2426. [CrossRef]
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 2411-2426
    • Thiel, C.1    Schmullius, C.2
  • 18
    • 84979943828 scopus 로고    scopus 로고
    • Tree species classification based on stem-related feature parameters derived from static terrestrial laser scanning data
    • [CrossRef]
    • Wei, T.; Lin, Y.; Yan, L.; Zhang, L. Tree species classification based on stem-related feature parameters derived from static terrestrial laser scanning data. Int. J. Remote Sens. 2016, 37, 4420-4440. [CrossRef]
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 4420-4440
    • Wei, T.1    Lin, Y.2    Yan, L.3    Zhang, L.4
  • 19
    • 84990829753 scopus 로고    scopus 로고
    • How to assess the accuracy of the individual tree-based forest inventory derived from remotely sensed data: A review
    • [CrossRef]
    • Yin, D.; Wang, L. How to assess the accuracy of the individual tree-based forest inventory derived from remotely sensed data: A review. Int. J. Remote Sens. 2016, 37, 4521-4553. [CrossRef]
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 4521-4553
    • Yin, D.1    Wang, L.2
  • 20
    • 84855738820 scopus 로고    scopus 로고
    • A review of methods and applications of the geometric characterization of tree crops in agricultural activities
    • [CrossRef]
    • Rosell, J.R.; Sanz, R. A Review of Methods and Applications of the Geometric Characterization of Tree Crops in Agricultural Activities. Comput. Electron. Agric. 2012, 81, 124-141. [CrossRef]
    • (2012) Comput. Electron. Agric. , vol.81 , pp. 124-141
    • Rosell, J.R.1    Sanz, R.2
  • 21
    • 85034732155 scopus 로고    scopus 로고
    • Papaya tree detection with UAV iamges using a GPU-accelerated scale-space filtering method
    • [CrossRef]
    • Jiang, H.; Chen, S.; Li, D.; Wang, C.; Yang, J. Papaya Tree Detection with UAV Iamges Using a GPU-Accelerated Scale-Space Filtering Method. Remote Sens. 2017, 9, 721. [CrossRef]
    • (2017) Remote Sens. , vol.9 , pp. 721
    • Jiang, H.1    Chen, S.2    Li, D.3    Wang, C.4    Yang, J.5
  • 23
    • 79951663739 scopus 로고    scopus 로고
    • Automated extracting tree canopy from quickbird stand image
    • Nanchang, China, 22-25 October 2010; IFIP Advances in Information and Communication Technology, AICT-344 (Part I); Springer: Berlin/Heidelberg, Germany
    • Deng, G.; Li, Z.; Wu, H.; Zhang, X. Automated Extracting Tree Canopy from Quickbird Stand Image. In Proceedings of the 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Nanchang, China, 22-25 October 2010; IFIP Advances in Information and Communication Technology, AICT-344 (Part I); Springer: Berlin/Heidelberg, Germany, 2010; pp. 304-311.
    • (2010) Proceedings of the 4th Conference on Computer and Computing Technologies in Agriculture (CCTA) , pp. 304-311
    • Deng, G.1    Li, Z.2    Wu, H.3    Zhang, X.4
  • 25
  • 26
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • [CrossRef]
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogr. Remote Sens. 2010, 65, 2-16. [CrossRef]
    • (2010) ISPRS J. Photogr. Remote Sens. , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 27
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • [CrossRef]
    • Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogr. Remote Sens. 2016, 117, 11-28. [CrossRef]
    • (2016) ISPRS J. Photogr. Remote Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 28
    • 84959230953 scopus 로고    scopus 로고
    • A comparison of performance of OBIA techniques available in open source software (spring and OTB/monteverdi) considering very high spatial resolution data
    • [CrossRef]
    • Teodoro, A.C.; Araújo, R. A Comparison of Performance of OBIA Techniques Available in Open Source Software (Spring and OTB/Monteverdi) considering Very High Spatial Resolution Data. J. Appl. Remote Sens. 2016, 10, 016011. [CrossRef]
    • (2016) J. Appl. Remote Sens. , vol.10 , pp. 016011
    • Teodoro, A.C.1    Araújo, R.2
  • 29
    • 85012155376 scopus 로고    scopus 로고
    • An assessment of pan-sharpening algorithms for mapping mangrove ecosystems: A hybrid approach
    • [CrossRef]
    • Shahzad, N.; Ahmad, S.R.; Ashraf, S. An assessment of pan-sharpening algorithms for mapping mangrove ecosystems: A hybrid approach. Int. J. Remote Sens. 2017, 38, 1579-1599. [CrossRef]
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 1579-1599
    • Shahzad, N.1    Ahmad, S.R.2    Ashraf, S.3
  • 30
    • 85044513338 scopus 로고    scopus 로고
    • online: (accessed on 10 March 2017) GRASS GIS
    • GRASS GIS. 2017. The World's Leading Free GIS Software. Available online: http://grass.osgeo.org/(accessed on 10 March 2017).
    • (2017) The World's Leading Free GIS Software
  • 31
    • 85044520851 scopus 로고    scopus 로고
    • online: (accessed on 10 March 2017).
    • Orfeu Toolbox (OTB). 2017. Orfeo Toolbox Is Not a Black Box. Available online: https://www.orfeo-toolbox. org/(accessed on 10 March 2017).
    • (2017) Orfeo Toolbox Is Not a Black Box
  • 32
    • 85044526947 scopus 로고    scopus 로고
    • online: (accessed on 12 March 2017). GNU Operating System
    • GNU Operating System. 2017. Stallman Four Freedoms. Available online: https://www.gnu.org/philosophy/free-sw.html (accessed on 12 March 2017).
    • (2017) Stallman Four Freedoms
  • 33
    • 85044542877 scopus 로고    scopus 로고
    • online (accessed on 10 March 2017).
    • QGIS. 2017. QGIS Project. Available online: http://www.qgis.org/(accessed on 10 March 2017).
    • (2017) QGIS Project
  • 34
    • 85017611450 scopus 로고    scopus 로고
    • An open-source semi-automated processing chain for urban object-based classification
    • [CrossRef]
    • Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification. Remote Sens. 2017, 9, 358. [CrossRef]
    • (2017) Remote Sens. , vol.9 , pp. 358
    • Grippa, T.1    Lennert, M.2    Beaumont, B.3    Vanhuysse, S.4    Stephenne, N.5    Wolff, E.6
  • 35
    • 85044534113 scopus 로고    scopus 로고
    • Open-source GIS application for UAV photogrammetry based onMicMac
    • [CrossRef]
    • Duarte, L.; Teodoro, A.C.;Moutinho, O.; Gonçalves, J.A. Open-source GIS application for UAV photogrammetry based onMicMac. Int. J. Remote Sens. 2016, 38, 8-10. [CrossRef]
    • (2016) Int. J. Remote Sens. , vol.38 , pp. 8-10
    • Duarte, L.1    Teodoro, A.C.2    Moutinho, O.3    Gonçalves, J.A.4
  • 37
    • 10044260457 scopus 로고    scopus 로고
    • online: (accessed on 9March 2016).
    • Python. 2017. Python Programming Language. Available online: http://python.org/(accessed on 9March 2016).
    • (2017) Python Programming Language
  • 38
    • 85040197633 scopus 로고    scopus 로고
    • online: (accessed on 10 March 2017).
    • QGIS API. 2017. QGIS API Documentation. Available online: http://www.qgis.org/api/(accessed on 10 March 2017).
    • (2017) QGIS API Documentation
  • 39
    • 85044502511 scopus 로고    scopus 로고
    • online: (accessed on 10 March 2016).
    • PyQt4 API. 2017. PyQt Class Reference. Available online: http://pyqt.sourceforge.net/Docs/PyQt4/classes. html (accessed on 10 March 2016).
    • (2017) PyQt Class Reference
  • 40
    • 85044512779 scopus 로고    scopus 로고
    • online (accessed on 10 March 2017). Qt Designer
    • Qt Designer. 2017. Qt Documentation. Available online: http://doc.qt.io/qt-4.8/designer-manual.html (accessed on 10 March 2017).
    • (2017) Qt Documentation
  • 41
    • 85044520006 scopus 로고    scopus 로고
    • online: (accessed on 5 December 2016).
    • Momsen, E.; Metz, M. Grass Osgeo Manual i.segment. Available online: https://grass.osgeo.org/grass73/manuals/i.segment.html (accessed on 5 December 2016).
    • Grass Osgeo Manual I.segment
    • Momsen, E.1    Metz, M.2
  • 45
    • 84872619154 scopus 로고    scopus 로고
    • online: (accessed on 10 March 2017).
    • GDAL/OGR. 2017. Geospatial Data Abstraction Library. Available online: http://www.gdal.org/(accessed on 10 March 2017).
    • (2017) Geospatial Data Abstraction Library


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.