메뉴 건너뛰기




Volumn 38, Issue 2, 2018, Pages 362-372

Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm

Author keywords

Continuous glucose monitoring (CGM); Differential evolution (DE); Support vector regression (SVR); Time series forecasting; Type 1 diabetes (T1D)

Indexed keywords

GLUCOSE;

EID: 85044099313     PISSN: 02085216     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bbe.2018.02.005     Document Type: Article
Times cited : (93)

References (40)
  • 1
    • 78651276631 scopus 로고    scopus 로고
    • Diagnosis and classification of diabetes mellitus
    • A.D. Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 34:January (1) (2011), 62–69.
    • (2011) Diabetes Care , vol.34 , Issue.January (1) , pp. 62-69
    • A.D. Association1
  • 2
    • 84983405028 scopus 로고    scopus 로고
    • (E)-9-oxooctadec-10-en-12-ynoic acid from Ixora brachiata Roxb. increases glucose uptake in L6 myotubes by activating the PI3K pathway
    • Thakkar, C.S., Kshirsagar, R., Naik, V., Ghosh, A., Vijayakumar, V., Saklani, A., et al. (E)-9-oxooctadec-10-en-12-ynoic acid from Ixora brachiata Roxb. increases glucose uptake in L6 myotubes by activating the PI3K pathway. Fitoterapia, 2016.
    • (2016) Fitoterapia
    • Thakkar, C.S.1    Kshirsagar, R.2    Naik, V.3    Ghosh, A.4    Vijayakumar, V.5    Saklani, A.6
  • 3
    • 78651338445 scopus 로고    scopus 로고
    • Standards of medical care
    • Association, A.D., Standards of medical care. Diabetes Care 34:January (1) (2011), 11–61.
    • (2011) Diabetes Care , vol.34 , Issue.January (1) , pp. 11-61
    • Association, A.D.1
  • 4
    • 18144421498 scopus 로고    scopus 로고
    • Continuous glucose monitoring – roadmap for 21st century diabetes therapy
    • Klonoff, D.C., Continuous glucose monitoring – roadmap for 21st century diabetes therapy. Diabetes Care 28:May (5) (2005), 1231–1239.
    • (2005) Diabetes Care , vol.28 , Issue.May (5) , pp. 1231-1239
    • Klonoff, D.C.1
  • 5
    • 0033011704 scopus 로고    scopus 로고
    • Is blood glucose predictable from previous values? A solicitation for data
    • Bremer, T., Gough, D., Is blood glucose predictable from previous values? A solicitation for data. Diabetes 44 (1999), 445–451.
    • (1999) Diabetes , vol.44 , pp. 445-451
    • Bremer, T.1    Gough, D.2
  • 7
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
    • Sparacino, G., Zanderigo, F., Corazza, S., Maran, A., Facchinetti, A., Cobelli, C., Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 54:5 (May 2007), 931–937.
    • (2007) IEEE Trans Biomed Eng , vol.54 , Issue.5 , pp. 931-937
    • Sparacino, G.1    Zanderigo, F.2    Corazza, S.3    Maran, A.4    Facchinetti, A.5    Cobelli, C.6
  • 8
    • 14844365611 scopus 로고    scopus 로고
    • Hypoglycemia prediction and detection using optimal estimation
    • Palerm, C., Willis, J., Desemone, J., Bequette, B., Hypoglycemia prediction and detection using optimal estimation. Diabetes Technol Ther 7:1 (2005), 3–14.
    • (2005) Diabetes Technol Ther , vol.7 , Issue.1 , pp. 3-14
    • Palerm, C.1    Willis, J.2    Desemone, J.3    Bequette, B.4
  • 9
    • 79551610188 scopus 로고    scopus 로고
    • Neural network-based real-time prediction of glucose in patients with insulindependent diabetes
    • Pappada, S., Cameron, B., Rosman, P., Bourey, R., Papadimos, T., Oloruntu, W., et al. Neural network-based real-time prediction of glucose in patients with insulindependent diabetes. Diabetes Technol Ther 13:2 (2011), 135–141.
    • (2011) Diabetes Technol Ther , vol.13 , Issue.2 , pp. 135-141
    • Pappada, S.1    Cameron, B.2    Rosman, P.3    Bourey, R.4    Papadimos, T.5    Oloruntu, W.6
  • 10
    • 75749125065 scopus 로고    scopus 로고
    • Development of a neural network for prediction of glucose
    • Pappada, S.M., Cameron, B.D., Rosman, P.M., Development of a neural network for prediction of glucose. J Diabetes Sci Technol, 2(September (5)), 2008.
    • (2008) J Diabetes Sci Technol , vol.2 , Issue.September (5)
    • Pappada, S.M.1    Cameron, B.D.2    Rosman, P.M.3
  • 14
    • 84882272395 scopus 로고    scopus 로고
    • Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression
    • Georga, E.I., Vasilios, C., Ardigo, D., Marina, M., Zavaroni, I., Polyzos, D., et al. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inform 17:January (1) (2013), 71–81.
    • (2013) IEEE J Biomed Health Inform , vol.17 , Issue.January (1) , pp. 71-81
    • Georga, E.I.1    Vasilios, C.2    Ardigo, D.3    Marina, M.4    Zavaroni, I.5    Polyzos, D.6
  • 15
    • 84948719040 scopus 로고    scopus 로고
    • Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models
    • Georga, E.I., Protopappas, V., Polyzos, D., Fotiadis, D., Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput 53:12 (2015), 1305–1318.
    • (2015) Med Biol Eng Comput , vol.53 , Issue.12 , pp. 1305-1318
    • Georga, E.I.1    Protopappas, V.2    Polyzos, D.3    Fotiadis, D.4
  • 16
    • 77949725812 scopus 로고    scopus 로고
    • Machine learning with SVM and other kernel methods
    • Prentice Hall
    • Soman, K.P., Loganathan, R., Ajay, V., Machine learning with SVM and other kernel methods. 2009, Prentice Hall.
    • (2009)
    • Soman, K.P.1    Loganathan, R.2    Ajay, V.3
  • 17
    • 84862124606 scopus 로고    scopus 로고
    • Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection
    • Nuryani, N., Ling, S.S., Nguyen, H.T., Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection. Ann Biomed Eng 40 (2012), 934–945.
    • (2012) Ann Biomed Eng , vol.40 , pp. 934-945
    • Nuryani, N.1    Ling, S.S.2    Nguyen, H.T.3
  • 18
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A.J., Scholkopf, B., A tutorial on support vector regression. Stat Comput 14:August (3) (2004), 199–222.
    • (2004) Stat Comput , vol.14 , Issue.August (3) , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 19
    • 51349094701 scopus 로고    scopus 로고
    • Time series prediction based on SVM and GA
    • Weiwei, W., Time series prediction based on SVM and GA. Conf Proc Electron Measure Instrum, 2007, 2-307–2-310.
    • (2007) Conf Proc Electron Measure Instrum , pp. 2-307-2-310
    • Weiwei, W.1
  • 20
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Opt 11:December (4) (1997), 341–359.
    • (1997) J Glob Opt , vol.11 , Issue.December (4) , pp. 341-359
    • Storn, R.1
  • 23
    • 84863239863 scopus 로고    scopus 로고
    • Prediction of water quality time series data based on least squares support vector machine
    • Tan, G., Yan, J., Gao, C., Prediction of water quality time series data based on least squares support vector machine. Procedia Eng 31 (2012), 1194–1199.
    • (2012) Procedia Eng , vol.31 , pp. 1194-1199
    • Tan, G.1    Yan, J.2    Gao, C.3
  • 24
    • 38649137245 scopus 로고    scopus 로고
    • Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm
    • Fei, S.W., Sun, Y., Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm. Electr Power Syst Res 78 (2008), 507–514.
    • (2008) Electr Power Syst Res , vol.78 , pp. 507-514
    • Fei, S.W.1    Sun, Y.2
  • 25
    • 84908259304 scopus 로고    scopus 로고
    • Research of least squares support vector regression based on differential evolution algorithm in short-term load forecasting model
    • Sun, W., Liang, Y., Research of least squares support vector regression based on differential evolution algorithm in short-term load forecasting model. J Renew Sustain Energy, 6(5), 2014, 053137.
    • (2014) J Renew Sustain Energy , vol.6 , Issue.5 , pp. 053137
    • Sun, W.1    Liang, Y.2
  • 26
    • 17144458994 scopus 로고    scopus 로고
    • Accuracy of the continuous glucose monitoring system in inpatient and outpatient conditions
    • Djakouré-Platonoff, C., Radermercker, R., Reach, G., Slama, G., Selam, J., Accuracy of the continuous glucose monitoring system in inpatient and outpatient conditions. Diabetes Metab 28 (2003), 159–162.
    • (2003) Diabetes Metab , vol.28 , pp. 159-162
    • Djakouré-Platonoff, C.1    Radermercker, R.2    Reach, G.3    Slama, G.4    Selam, J.5
  • 27
    • 84866274945 scopus 로고    scopus 로고
    • Real time continuous glucose monitoring (CGM) integrated into the treatment of type 1 diabetes: consensus of experts from SFD, EVADIAC and SFE
    • Benhamou, P.Y., Catargi, B., Delenne, B., Guerci, B., Hanaire, H., Real time continuous glucose monitoring (CGM) integrated into the treatment of type 1 diabetes: consensus of experts from SFD, EVADIAC and SFE. Diabetes Metab 38 (2012), 67–83.
    • (2012) Diabetes Metab , vol.38 , pp. 67-83
    • Benhamou, P.Y.1    Catargi, B.2    Delenne, B.3    Guerci, B.4    Hanaire, H.5
  • 28
    • 84891821449 scopus 로고    scopus 로고
    • Time lag of glucose from intravascular to interstitial compartment
    • Basu, A., Dube, S., Slama, M., Time lag of glucose from intravascular to interstitial compartment. Hum Diabetes 62 (2013), 4083–4087.
    • (2013) Hum Diabetes , vol.62 , pp. 4083-4087
    • Basu, A.1    Dube, S.2    Slama, M.3
  • 30
    • 1542439960 scopus 로고    scopus 로고
    • Performance assessment of the Medtronic-MiniMed Continuous Glucose Monitoring System and its use for measurement of glycaemic control in Type 1 diabetic subjects
    • Sachedina, N., Pickup, J., Performance assessment of the Medtronic-MiniMed Continuous Glucose Monitoring System and its use for measurement of glycaemic control in Type 1 diabetic subjects. Diabetic Med 20:12 (2003), 1012–1015.
    • (2003) Diabetic Med , vol.20 , Issue.12 , pp. 1012-1015
    • Sachedina, N.1    Pickup, J.2
  • 31
    • 78650269743 scopus 로고    scopus 로고
    • Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices
    • Rossetti, P., Bondia, J., Vehí J., Fanelli, C., Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices. Sensors 10:12 (2010), 10936–10952.
    • (2010) Sensors , vol.10 , Issue.12 , pp. 10936-10952
    • Rossetti, P.1    Bondia, J.2    Vehí, J.3    Fanelli, C.4
  • 32
    • 84884179161 scopus 로고    scopus 로고
    • Glucose predictability,blood capillary permeability,and glucose utilization ratein subcutaneous, skeletal muscle, and visceral fat tissues
    • Koutny, T., Glucose predictability,blood capillary permeability,and glucose utilization ratein subcutaneous, skeletal muscle, and visceral fat tissues. Comput Biol Med(43), 2013, 1680–1686.
    • (2013) Comput Biol Med , Issue.43 , pp. 1680-1686
    • Koutny, T.1
  • 33
    • 0036208184 scopus 로고    scopus 로고
    • Combining neural network predictions for medical diagnosis
    • Hayashia, Y., Setiono, R., Combining neural network predictions for medical diagnosis. Comput Biol Med(32), 2002, 237–246.
    • (2002) Comput Biol Med , Issue.32 , pp. 237-246
    • Hayashia, Y.1    Setiono, R.2
  • 34
    • 0003585297 scopus 로고    scopus 로고
    • Accuracy and error measures Concepts and Techniques
    • Elsevier United States of America
    • Han, J., Accuracy and error measures Concepts and Techniques. Data mining, 2006, Elsevier, United States of America, 770.
    • (2006) Data mining , pp. 770
    • Han, J.1
  • 37
    • 84856823333 scopus 로고    scopus 로고
    • Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: a proof-of-concept pilot study
    • Robertson, G., Lehmann, E.D., Sandham, W., Hamilton, D., Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: a proof-of-concept pilot study. J Electr Comput Eng, 2011, 2011, 2.
    • (2011) J Electr Comput Eng , vol.2011 , pp. 2
    • Robertson, G.1    Lehmann, E.D.2    Sandham, W.3    Hamilton, D.4
  • 38
    • 84861394725 scopus 로고    scopus 로고
    • Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration
    • Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C., Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Bio-Med Eng 59:6 (2012), 1550–1560.
    • (2012) IEEE Trans Bio-Med Eng , vol.59 , Issue.6 , pp. 1550-1560
    • Zecchin, C.1    Facchinetti, A.2    Sparacino, G.3    De Nicolao, G.4    Cobelli, C.5
  • 40
    • 1842583012 scopus 로고    scopus 로고
    • Alarms based on realtime sensor glucose values alert patients to hypo- and hyperglycemia: the guardian continuous monitoring system
    • Bode, B., Gross, K., Rikalo, N., Schwartz, S., Wahl, T., Page, C., et al. Alarms based on realtime sensor glucose values alert patients to hypo- and hyperglycemia: the guardian continuous monitoring system. Diabetes Technol Ther 6 (2004), 105–113.
    • (2004) Diabetes Technol Ther , vol.6 , pp. 105-113
    • Bode, B.1    Gross, K.2    Rikalo, N.3    Schwartz, S.4    Wahl, T.5    Page, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.