메뉴 건너뛰기




Volumn 108, Issue 5, 2018, Pages 1422-1441

Mining Twitter Data for Improved Understanding of Disaster Resilience

Author keywords

geographical and social disparities in disaster resilience; Hurricane Sandy; social media; Twitter use

Indexed keywords

DISASTER MANAGEMENT; HURRICANE SANDY 2012; INTERNET; SOCIAL MEDIA;

EID: 85044077100     PISSN: 24694452     EISSN: 24694460     Source Type: Journal    
DOI: 10.1080/24694452.2017.1421897     Document Type: Article
Times cited : (173)

References (53)
  • 2
    • 84856343452 scopus 로고    scopus 로고
    • Sentiment analysis of Twitter data
    • Stroudsburg, PA: Association for Computational Linguistics, and,. ed. M. Nagarajan and M. Gamon
    • Agarwal, A., B., Xie, I., Vovsha, O., Rambow, and R., Passonneau. 2011. Sentiment analysis of Twitter data. In Proceedings of the workshop on languages in social media, ed. M. Nagarajan and M. Gamon, 30–38. Stroudsburg, PA: Association for Computational Linguistics.
    • (2011) Proceedings of the workshop on languages in social media , pp. 30-38
    • Agarwal, A.1    Xie, B.2    Vovsha, I.3    Rambow, O.4    Passonneau, R.5
  • 3
    • 85050706465 scopus 로고    scopus 로고
    • Accessed April 17 2017
    • Cable News Network. 2012. Hurricane Sandy fast facts. Accessed April 17 2017. http://www.cnn.com/2013/07/13/world/americas/hurricane-sandy-fast-facts/index.html.
    • (2012) Hurricane Sandy fast facts
  • 4
    • 84960113586 scopus 로고    scopus 로고
    • Assessing community resilience to coastal hazards in the lower Mississippi River basin
    • Cai, H., N. S. N., Lam, L., Zou, Y., Qiang, and K., Li. 2016. Assessing community resilience to coastal hazards in the lower Mississippi River basin. Water 8 (2):46.
    • (2016) Water , vol.8 , Issue.2 , pp. 46
    • Cai, H.1    Lam, N.S.N.2    Zou, L.3    Qiang, Y.4    Li, K.5
  • 6
    • 84942938595 scopus 로고    scopus 로고
    • Climate change sentiment on Twitter: An unsolicited public opinion poll
    • Cody, E. M., A. J., Reagan, L., Mitchell, P. S., Dodds, and C. M., Danforth. 2015. Climate change sentiment on Twitter: An unsolicited public opinion poll. PLoS ONE 10 (8):e0136092.
    • (2015) PLoS ONE , vol.10 , Issue.8
    • Cody, E.M.1    Reagan, A.J.2    Mitchell, L.3    Dodds, P.S.4    Danforth, C.M.5
  • 9
    • 82855168069 scopus 로고    scopus 로고
    • Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter
    • Dodds, P. S., K. D., Harris, I. M., Kloumann, C. A., Bliss, and C. M., Danforth. 2011. Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS ONE 6 (12):e26752.
    • (2011) PLoS ONE , vol.6 , Issue.12
    • Dodds, P.S.1    Harris, K.D.2    Kloumann, I.M.3    Bliss, C.A.4    Danforth, C.M.5
  • 10
    • 84861833360 scopus 로고    scopus 로고
    • Using social media to build community disaster resilience
    • Dufty, N., 2012. Using social media to build community disaster resilience. Australian Journal of Emergency Management 27 (1):40.
    • (2012) Australian Journal of Emergency Management , vol.27 , Issue.1 , pp. 40
    • Dufty, N.1
  • 11
    • 84855995176 scopus 로고    scopus 로고
    • Twitter earthquake detection: Earthquake monitoring in a social world
    • 708–15
    • Earle, P. S., D. C., Bowden, and M., Guy. 2012. Twitter earthquake detection: Earthquake monitoring in a social world. Annals of Geophysics 54 (6):708–15.
    • (2012) Annals of Geophysics , vol.54 , Issue.6
    • Earle, P.S.1    Bowden, D.C.2    Guy, M.3
  • 14
    • 85050704763 scopus 로고    scopus 로고
    • Accessed April 17, 2017
    • ———. 2012. Hurricane Sandy impact analysis. Accessed April 17, 2017. https://www.arcgis.com/home/item.html?id=307dd522499blk14;d-4a44a33d7296a5da5ea0
    • (2012) Hurricane Sandy impact analysis
  • 15
    • 80053345545 scopus 로고    scopus 로고
    • Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures
    • Golder, S. A., and M. W., Macy. 2011. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333 (6051):1878.
    • (2011) Science , vol.333 , Issue.6051 , pp. 1878
    • Golder, S.A.1    Macy, M.W.2
  • 16
    • 84908226358 scopus 로고    scopus 로고
    • Where in the world are you? Geolocation and language identification in Twitter
    • Graham, M., S. A., Hale, and D., Gaffney. 2014. Where in the world are you? Geolocation and language identification in Twitter. The Professional Geographer 66 (4):568–78.
    • (2014) The Professional Geographer , vol.66 , Issue.4 , pp. 568-578
    • Graham, M.1    Hale, S.A.2    Gaffney, D.3
  • 17
    • 84939894685 scopus 로고    scopus 로고
    • Using social media data to understand and assess disasters
    • Guan, X., and C., Chen. 2014. Using social media data to understand and assess disasters. Natural Hazards 74 (2):837–50.
    • (2014) Natural Hazards , vol.74 , Issue.2 , pp. 837-850
    • Guan, X.1    Chen, C.2
  • 18
    • 84999751923 scopus 로고    scopus 로고
    • Tracking the evolution of infrastructure systems and mass responses using publically available data
    • Guan, X., C., Chen, and D., Work. 2016. Tracking the evolution of infrastructure systems and mass responses using publically available data. PLoS ONE 11 (12):e0167267.
    • (2016) PLoS ONE , vol.11 , Issue.12
    • Guan, X.1    Chen, C.2    Work, D.3
  • 19
    • 85050705578 scopus 로고    scopus 로고
    • Twitter storms can help gauge damage of real storms and disasters, study says
    • March 11, Accessed May 17, 2017
    • Hotz, R. L., 2016. Twitter storms can help gauge damage of real storms and disasters, study says. Wall Street Journal, March 11. Accessed May 17, 2017. http://www.wsj.com/articles/twitter-storms-can-help-gauge-damage-of-real-storms-and-disasters-study-says-1457722801.
    • (2016) Wall Street Journal
    • Hotz, R.L.1
  • 20
    • 84909954410 scopus 로고    scopus 로고
    • VADER: A parsimonious rule-based model for sentiment analysis of social media text
    • In, ed. E. Adar and P. Resnick, 216–25. Palo Alto, CA: The Association for the Advancement of Artificial Intelligence Press
    • Hutto, C. J., and E., Gilbert. 2014. VADER: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth international AAAI conference on weblogs and social media, ed. E. Adar and P. Resnick, 216–25. Palo Alto, CA: The Association for the Advancement of Artificial Intelligence Press.
    • (2014) Eighth international AAAI conference on weblogs and social media
    • Hutto, C.J.1    Gilbert, E.2
  • 21
    • 84878605190 scopus 로고    scopus 로고
    • Spatial patterns and demographic indicators of effective social media content during the Horsethief Canyon fire of 2012
    • Kent, J. D., and H. T., Capello. 2013. Spatial patterns and demographic indicators of effective social media content during the Horsethief Canyon fire of 2012. Cartography and Geographic Information Science 40 (2):78–89.
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.2 , pp. 78-89
    • Kent, J.D.1    Capello, H.T.2
  • 22
    • 84901617244 scopus 로고    scopus 로고
    • Public microblogging on climate change: One year of Twitter worldwide
    • Kirilenko, A. P., and S. O., Stepchenkova. 2014. Public microblogging on climate change: One year of Twitter worldwide. Global Environmental Change 26:171–82.
    • (2014) Global Environmental Change , vol.26 , pp. 171-182
    • Kirilenko, A.P.1    Stepchenkova, S.O.2
  • 23
    • 34247345283 scopus 로고    scopus 로고
    • Visual representations of the spatial relationship between Bermuda High strengths and hurricane tracks
    • Knowles, J. T., and M., Leitner. 2007. Visual representations of the spatial relationship between Bermuda High strengths and hurricane tracks. Cartographic Perspectives 56:37–51.
    • (2007) Cartographic Perspectives , vol.56 , pp. 37-51
    • Knowles, J.T.1    Leitner, M.2
  • 24
    • 84923309286 scopus 로고    scopus 로고
    • Performance of social network sensors during Hurricane Sandy
    • Kryvasheyeu, Y., H., Chen, E., Moro, P. V., Hentenryck, and M., Cebrian. 2015. Performance of social network sensors during Hurricane Sandy. PLoS ONE 10 (2):e0117288.
    • (2015) PLoS ONE , vol.10 , Issue.2
    • Kryvasheyeu, Y.1    Chen, H.2    Moro, E.3    Hentenryck, P.V.4    Cebrian, M.5
  • 26
    • 84971419907 scopus 로고    scopus 로고
    • Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge
    • Kwan, M. P., 2016. Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge. Annals of the American Association of Geographers 106 (2):274–82.
    • (2016) Annals of the American Association of Geographers , vol.106 , Issue.2 , pp. 274-282
    • Kwan, M.P.1
  • 27
    • 84899986819 scopus 로고    scopus 로고
    • Expressions of risk awareness and concern through Twitter: On the utility of using the medium as an indication of audience needs
    • Lachlan, K. A., P. R., Spence, and X., Lin. 2014. Expressions of risk awareness and concern through Twitter: On the utility of using the medium as an indication of audience needs. Computers in Human Behavior 35:554–59.
    • (2014) Computers in Human Behavior , vol.35 , pp. 554-559
    • Lachlan, K.A.1    Spence, P.R.2    Lin, X.3
  • 28
    • 84938967394 scopus 로고    scopus 로고
    • Assessment of vulnerability and adaptive capacity to coastal hazards in the Caribbean region
    • Lam, N. S. N., H., Arenas, P. L., Brito, and K.B., Liu. 2014. Assessment of vulnerability and adaptive capacity to coastal hazards in the Caribbean region. Journal of Coastal Research 70 (Suppl. 1):473–78.
    • (2014) Journal of Coastal Research , vol.70 , pp. 473-478
    • Lam, N.S.N.1    Arenas, H.2    Brito, P.L.3    Liu, K.B.4
  • 30
    • 84954549358 scopus 로고    scopus 로고
    • Measuring community resilience to coastal hazards along the northern Gulf of Mexico
    • Lam, N. S. N., M., Reams, K., Li, C., Li, and L. P., Mata. 2016. Measuring community resilience to coastal hazards along the northern Gulf of Mexico. Natural Hazards Review 17 (1):04015013.
    • (2016) Natural Hazards Review , vol.17 , Issue.1 , pp. 04015013
    • Lam, N.S.N.1    Reams, M.2    Li, K.3    Li, C.4    Mata, L.P.5
  • 32
    • 84878548460 scopus 로고    scopus 로고
    • Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr
    • Li, L., M. F., Goodchild, and B., Xu. 2013. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartography and Geographic Information Science 40 (2):61–77.
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.2 , pp. 61-77
    • Li, L.1    Goodchild, M.F.2    Xu, B.3
  • 34
    • 84907312209 scopus 로고    scopus 로고
    • A demographic analysis of online sentiment during Hurricane Irene
    • Stroudsburg, PA: Association for Computational Linguistics, and,. ed. M. Nagarajan, S. Owsley Sood, and M. Gamon
    • Mandel, B., A., Culotta, J., Boulahanis, D., Stark, B., Lewis, and J., Rodrigue. 2012. A demographic analysis of online sentiment during Hurricane Irene. In Proceedings of the second workshop on language in social media, ed. M. Nagarajan, S. Owsley Sood, and M. Gamon, 27–36. Stroudsburg, PA: Association for Computational Linguistics.
    • (2012) Proceedings of the second workshop on language in social media , pp. 27-36
    • Mandel, B.1    Culotta, A.2    Boulahanis, J.3    Stark, D.4    Lewis, B.5    Rodrigue, J.6
  • 35
    • 79960887663 scopus 로고    scopus 로고
    • Integrating social media into emergency-preparedness efforts
    • Merchant, R. M., S., Elmer, and N., Lurie. 2011. Integrating social media into emergency-preparedness efforts. New England Journal of Medicine 365 (4):289–91.
    • (2011) New England Journal of Medicine , vol.365 , Issue.4 , pp. 289-291
    • Merchant, R.M.1    Elmer, S.2    Lurie, N.3
  • 36
    • 85070357722 scopus 로고    scopus 로고
    • Understanding the demographics of Twitter users
    • Spain: Barcelona, and,. ed. N. Nicolov and J. G. Shanahan : The Association for the Advancement of Artificial Intelligence Press
    • Mislove, A., S., Lehmann, Y. Y., Ahn, J. P., Onnela, and J. N., Rosenquist. 2011. Understanding the demographics of Twitter users. In Proceedings of the fifth international AAAI conference on weblogs and social media, ed. N. Nicolov and J. G. Shanahan, 554–57. Spain, Barcelona: The Association for the Advancement of Artificial Intelligence Press.
    • (2011) Proceedings of the fifth international AAAI conference on weblogs and social media , pp. 554-557
    • Mislove, A.1    Lehmann, S.2    Ahn, Y.Y.3    Onnela, J.P.4    Rosenquist, J.N.5
  • 37
    • 84878443397 scopus 로고    scopus 로고
    • The geography of happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place
    • Mitchell, L., M. R., Frank, K. D., Harris, P. S., Dodds, and C. M., Danforth. 2013. The geography of happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place. PLoS ONE 8 (5):e64417.
    • (2013) PLoS ONE , vol.8 , Issue.5
    • Mitchell, L.1    Frank, M.R.2    Harris, K.D.3    Dodds, P.S.4    Danforth, C.M.5
  • 38
    • 84883279668 scopus 로고    scopus 로고
    • National Hurricane Center, NOAA, Accessed September 22, 2017
    • National Oceanic and Atmospheric Administration (NOAA). 2012. Hurricane SANDY. National Hurricane Center, NOAA. Accessed September 22, 2017. http://www.nhc.noaa.gov/archive/2012/al18/al182012.public.029.shtml?.
    • (2012) Hurricane SANDY
  • 40
    • 84874634932 scopus 로고    scopus 로고
    • Washington, DC: National Academies Press
    • National Research Council. 2012. Disaster resilience: A national imperative. Washington, DC: National Academies Press.
    • (2012) Disaster resilience: A national imperative
  • 42
    • 84898918524 scopus 로고    scopus 로고
    • Visualizing community resilience metrics from Twitter data
    • In, ed. D. Archambault, E. Kandogan, and M. Harrigan, 6–9. Palo Alto, CA: The Association for the Advancement of Artificial Intelligence (AAAI) Press
    • Patton, R. M., C. A., Steed, and C. G., Stahl. 2013. Visualizing community resilience metrics from Twitter data. In 2013 International Conference on Weblogs and Social Media (ICWSM) Workshop, ed. D. Archambault, E. Kandogan, and M. Harrigan, 6–9. Palo Alto, CA: The Association for the Advancement of Artificial Intelligence (AAAI) Press.
    • (2013) 2013 International Conference on Weblogs and Social Media (ICWSM) Workshop
    • Patton, R.M.1    Steed, C.A.2    Stahl, C.G.3
  • 43
    • 84892478550 scopus 로고    scopus 로고
    • Measuring capacity for resilience among coastal counties of the US northern Gulf of Mexico region
    • Reams, M. A., N. S. N., Lam, and A., Baker. 2012. Measuring capacity for resilience among coastal counties of the US northern Gulf of Mexico region. American Journal of Climate Change 1 (4):194–204.
    • (2012) American Journal of Climate Change , vol.1 , Issue.4 , pp. 194-204
    • Reams, M.A.1    Lam, N.S.N.2    Baker, A.3
  • 44
    • 84905833904 scopus 로고    scopus 로고
    • Building a resilient community through social network: Ethical considerations about the 2011 Genoa floods
    • University Park, PA:, and,. ed. S. R. Hiltz, M. S. Pfaff, L. Plotnick, and P. C. Shih : The Pennsylvania State University
    • Rizza, C., and A. G., Pereira. 2014. Building a resilient community through social network: Ethical considerations about the 2011 Genoa floods. In Proceedings of the 11th international information systems for crisis response and management (ISCRAM) conference, ed. S. R. Hiltz, M. S. Pfaff, L. Plotnick, and P. C. Shih, 289–93. University Park, PA: The Pennsylvania State University.
    • (2014) Proceedings of the 11th international information systems for crisis response and management (ISCRAM) conference , pp. 289-293
    • Rizza, C.1    Pereira, A.G.2
  • 46
    • 84894218262 scopus 로고    scopus 로고
    • Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of “big data
    • Shelton, T., A., Poorthuis, M., Graham, and M., Zook. 2014. Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of “big data.” Geoforum 52:167–79.
    • (2014) Geoforum , vol.52 , pp. 167-179
    • Shelton, T.1    Poorthuis, A.2    Graham, M.3    Zook, M.4
  • 47
    • 84923888276 scopus 로고    scopus 로고
    • Who tweets? Deriving the demographic characteristics of age, occupation and social class from Twitter user meta-data
    • Sloan, L., J., Morgan, P., Burnap, and M., Williams. 2015. Who tweets? Deriving the demographic characteristics of age, occupation and social class from Twitter user meta-data. PLoS ONE 10 (3):e0115545.
    • (2015) PLoS ONE , vol.10 , Issue.3
    • Sloan, L.1    Morgan, J.2    Burnap, P.3    Williams, M.4
  • 49
    • 84939818338 scopus 로고    scopus 로고
    • Research challenges and opportunities in mapping social media and big data
    • Tsou, M. H., 2015. Research challenges and opportunities in mapping social media and big data. Cartography and Geographic Information Science 42 (Supp1.):70–74.
    • (2015) Cartography and Geographic Information Science , vol.42 , Issue.Supp1. , pp. 70-74
    • Tsou, M.H.1
  • 52
    • 84919372647 scopus 로고    scopus 로고
    • Quantifying human mobility perturbation and resilience in hurricane sandy
    • Wang, Q., and J. E., Taylor. 2014. Quantifying human mobility perturbation and resilience in hurricane sandy. PLoS ONE 9 (11):e112608.
    • (2014) PLoS ONE , vol.9 , Issue.11
    • Wang, Q.1    Taylor, J.E.2
  • 53
    • 84905661509 scopus 로고    scopus 로고
    • PhaseVis: What, when, where, and who in visualizing the four phases of emergency management through the lens of social media
    • In, ed. T. Comes, F. Fiedrich, S. Fortier, J. Gelderman, and T. Müller, 912–17. Karlsruhe, Germany: Karlsruhe Institute of Technology
    • Yang, S., H., Chung, X., Lin, S., Lee, L., Chen, A., Wood, A. L., Kavanaugh, S. D., Sheetz, D. J., Shoemaker, and E. A., Fox. 2013. PhaseVis: What, when, where, and who in visualizing the four phases of emergency management through the lens of social media. In 10th international conference on information systems for crisis response and management, ed. T. Comes, F. Fiedrich, S. Fortier, J. Gelderman, and T. Müller, 912–17. Karlsruhe, Germany: Karlsruhe Institute of Technology.
    • (2013) 10th international conference on information systems for crisis response and management
    • Yang, S.1    Chung, H.2    Lin, X.3    Lee, S.4    Chen, L.5    Wood, A.6    Kavanaugh, A.L.7    Sheetz, S.D.8    Shoemaker, D.J.9    Fox, E.A.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.