메뉴 건너뛰기




Volumn 23, Issue 5, 2018, Pages 451-466

Translating High-Throughput Phenotyping into Genetic Gain

Author keywords

field phenotyping; genetic gain; high throughput; remote sensing

Indexed keywords

CROP; GENETICS; GENOMICS; GROWTH, DEVELOPMENT AND AGING; HETEROSIS; PHENOTYPE; PLANT; PLANT BREEDING; PLANT DEVELOPMENT; PROCEDURES; QUANTITATIVE TRAIT LOCUS;

EID: 85043993701     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2018.02.001     Document Type: Review
Times cited : (488)

References (105)
  • 1
    • 39049109735 scopus 로고    scopus 로고
    • Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain
    • Acreche, M.M., et al. Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain. Eur. J. Agron. 28 (2008), 162–170.
    • (2008) Eur. J. Agron. , vol.28 , pp. 162-170
    • Acreche, M.M.1
  • 2
    • 79961039538 scopus 로고    scopus 로고
    • Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007
    • Sadras, V.O., et al. Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop Pasture Sci. 62 (2011), 533–549.
    • (2011) Crop Pasture Sci. , vol.62 , pp. 533-549
    • Sadras, V.O.1
  • 3
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping, the new frontier in crop breeding
    • Araus, J.L., Cairns, J.E., Field high-throughput phenotyping, the new frontier in crop breeding. Trends Plant Sci. 19 (2014), 52–61.
    • (2014) Trends Plant Sci. , vol.19 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 4
    • 84924031799 scopus 로고    scopus 로고
    • Physiological phenotyping of plants for crop improvement
    • Ghanem, M.E., et al. Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 20 (2015), 139–144.
    • (2015) Trends Plant Sci. , vol.20 , pp. 139-144
    • Ghanem, M.E.1
  • 5
    • 85027532988 scopus 로고    scopus 로고
    • Plant phenomics, from sensors to knowledge
    • Tardieu, F., et al. Plant phenomics, from sensors to knowledge. Curr. Biol. 27 (2017), R770–R783.
    • (2017) Curr. Biol. , vol.27 , pp. R770-R783
    • Tardieu, F.1
  • 6
    • 84906943620 scopus 로고    scopus 로고
    • Genomic selection: genome-wide prediction in plant improvement
    • Abera Desta, Z., Ortiz, R., Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19 (2014), 592–601.
    • (2014) Trends Plant Sci. , vol.19 , pp. 592-601
    • Abera Desta, Z.1    Ortiz, R.2
  • 7
    • 84907618712 scopus 로고    scopus 로고
    • Genomics for drought resistance – getting down to earth
    • Blum, A., Genomics for drought resistance – getting down to earth. Funct. Plant Biol. 41 (2014), 1191–1198.
    • (2014) Funct. Plant Biol. , vol.41 , pp. 1191-1198
    • Blum, A.1
  • 8
    • 84958062639 scopus 로고    scopus 로고
    • The future of field trials in Europe: establishing a network beyond boundaries
    • Stützel, H., et al. The future of field trials in Europe: establishing a network beyond boundaries. Trend Plant Sci. 21 (2016), 92–95.
    • (2016) Trend Plant Sci. , vol.21 , pp. 92-95
    • Stützel, H.1
  • 9
    • 85006255885 scopus 로고    scopus 로고
    • The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system
    • Kirchgessner, N., et al. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct. Plant Biol. 44 (2016), 154–168.
    • (2016) Funct. Plant Biol. , vol.44 , pp. 154-168
    • Kirchgessner, N.1
  • 10
    • 85006253072 scopus 로고    scopus 로고
    • Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring
    • Virlet, N., et al. Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 44 (2016), 143–153.
    • (2016) Funct. Plant Biol. , vol.44 , pp. 143-153
    • Virlet, N.1
  • 11
    • 84879346043 scopus 로고    scopus 로고
    • Improving productivity of crops in water-limited environments
    • Passioura, J.B., Angus, J.F., Improving productivity of crops in water-limited environments. Adv. Agron. 106 (2010), 37–75.
    • (2010) Adv. Agron. , vol.106 , pp. 37-75
    • Passioura, J.B.1    Angus, J.F.2
  • 12
    • 84989315292 scopus 로고    scopus 로고
    • The quest for understanding phenotypic variation via integrated approaches in the field environment
    • Pauli, D., et al. The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol. 172 (2016), 622–634.
    • (2016) Plant Physiol. , vol.172 , pp. 622-634
    • Pauli, D.1
  • 13
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics – technologies to relieve the phenotyping bottleneck
    • Furbank, R.T., Tester, M., Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16 (2011), 635–644.
    • (2011) Trends Plant Sci. , vol.16 , pp. 635-644
    • Furbank, R.T.1    Tester, M.2
  • 14
    • 85024491712 scopus 로고    scopus 로고
    • Enhancing genetic gain in the era of molecular breeding
    • Xu, Y., et al. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 68 (2017), 2641–2666.
    • (2017) J. Exp. Bot. , vol.68 , pp. 2641-2666
    • Xu, Y.1
  • 15
    • 0003995062 scopus 로고    scopus 로고
    • Introduction to Quantitative Genetics
    • 4th edn Longman Group Ltd
    • Falconer, D.S., Mackay, T.F.C., Introduction to Quantitative Genetics. 4th edn, 1996, Longman Group Ltd.
    • (1996)
    • Falconer, D.S.1    Mackay, T.F.C.2
  • 16
    • 84875426911 scopus 로고    scopus 로고
    • Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement
    • Cobb, J.N., et al. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126 (2013), 867–887.
    • (2013) Theor. Appl. Genet. , vol.126 , pp. 867-887
    • Cobb, J.N.1
  • 17
    • 84883222798 scopus 로고    scopus 로고
    • Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment
    • Lorenz, A.J., Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3 (Bethesda) 3 (2013), 481–491.
    • (2013) G3 (Bethesda) , vol.3 , pp. 481-491
    • Lorenz, A.J.1
  • 18
    • 84988354832 scopus 로고    scopus 로고
    • High-throughput phenotyping technologies allow accurate selection of stay-green
    • Rebetzke, G.J., et al. High-throughput phenotyping technologies allow accurate selection of stay-green. J. Exp. Bot. 67 (2016), 4919–4924.
    • (2016) J. Exp. Bot. , vol.67 , pp. 4919-4924
    • Rebetzke, G.J.1
  • 19
    • 85011650258 scopus 로고    scopus 로고
    • A study of allelic diversity underlying flowering-time adaptation in maize landraces
    • Navarro, J., et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49 (2017), 476–480.
    • (2017) Nat. Genet. , vol.49 , pp. 476-480
    • Navarro, J.1
  • 20
    • 85010442975 scopus 로고    scopus 로고
    • Gains in maize genetic improvement in Eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline
    • Masuka, B., et al. Gains in maize genetic improvement in Eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci. 57 (2017), 168–179.
    • (2017) Crop Sci. , vol.57 , pp. 168-179
    • Masuka, B.1
  • 21
    • 84908509157 scopus 로고    scopus 로고
    • Proximal remote sensing buggies and potential applications for field-based phenotyping
    • Deery, D.M., et al. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4 (2014), 349–379.
    • (2014) Agronomy , vol.4 , pp. 349-379
    • Deery, D.M.1
  • 22
    • 85007432911 scopus 로고    scopus 로고
    • Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography
    • Deery, D.M., et al. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front. Plant Sci., 7, 2016, 1808.
    • (2016) Front. Plant Sci. , vol.7 , pp. 1808
    • Deery, D.M.1
  • 23
    • 84923536786 scopus 로고    scopus 로고
    • Lights, camera, action: high-throughput plant phenotyping is ready for a close-up
    • Fahlgren, N., et al. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24 (2015), 93–99.
    • (2015) Curr. Opin. Plant Biol. , vol.24 , pp. 93-99
    • Fahlgren, N.1
  • 24
    • 84984653696 scopus 로고    scopus 로고
    • A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding
    • Tattaris, M., et al. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front. Plant Sci., 7, 2016, 1131.
    • (2016) Front. Plant Sci. , vol.7 , pp. 1131
    • Tattaris, M.1
  • 25
    • 84997079056 scopus 로고    scopus 로고
    • Tansley review. Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential
    • De Souza, A.P., et al. Tansley review. Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytol. 213 (2017), 50–65.
    • (2017) New Phytol. , vol.213 , pp. 50-65
    • De Souza, A.P.1
  • 26
    • 0036599442 scopus 로고    scopus 로고
    • Plant breeding and water stress in C3 cereals: what to breed for?
    • Araus, J.L., et al. Plant breeding and water stress in C3 cereals: what to breed for?. Ann. Bot. 89 (2002), 925–940.
    • (2002) Ann. Bot. , vol.89 , pp. 925-940
    • Araus, J.L.1
  • 27
    • 8444226471 scopus 로고    scopus 로고
    • Breeding for high water-use efficiency
    • Condon, A.G., et al. Breeding for high water-use efficiency. J. Exp. Bot. 55 (2004), 2447–2460.
    • (2004) J. Exp. Bot. , vol.55 , pp. 2447-2460
    • Condon, A.G.1
  • 28
    • 56849108613 scopus 로고    scopus 로고
    • Breeding for yield potential and stress adaptation in cereals
    • Araus, J.L., et al. Breeding for yield potential and stress adaptation in cereals. CRC Crit. Rev. Plant Sci. 27 (2008), 1–36.
    • (2008) CRC Crit. Rev. Plant Sci. , vol.27 , pp. 1-36
    • Araus, J.L.1
  • 29
    • 55949114092 scopus 로고    scopus 로고
    • Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations
    • Rebetzke, G.J., et al. Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor. Appl. Genet. 118 (2008), 123–137.
    • (2008) Theor. Appl. Genet. , vol.118 , pp. 123-137
    • Rebetzke, G.J.1
  • 30
    • 84944314951 scopus 로고    scopus 로고
    • Current and prospective methods for plant disease detection
    • Fang, Y., Ramasamy, R.P., Current and prospective methods for plant disease detection. Biosensors (Basel) 5 (2015), 537–561.
    • (2015) Biosensors (Basel) , vol.5 , pp. 537-561
    • Fang, Y.1    Ramasamy, R.P.2
  • 31
    • 84922240808 scopus 로고    scopus 로고
    • Image-based phenotyping of plant disease symptoms
    • Mutka, A.M., Bart, R.S., Image-based phenotyping of plant disease symptoms. Front. Plant Sci., 5, 2015, 734.
    • (2015) Front. Plant Sci. , vol.5 , pp. 734
    • Mutka, A.M.1    Bart, R.S.2
  • 32
    • 84898065914 scopus 로고    scopus 로고
    • Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization
    • Quemada, M., Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens. 6 (2014), 2940–2962.
    • (2014) Remote Sens. , vol.6 , pp. 2940-2962
    • Quemada, M.1
  • 33
    • 84962135683 scopus 로고    scopus 로고
    • Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture
    • Zarco-Tejada, P.J., et al. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 179 (2016), 89–103.
    • (2016) Remote Sens. Environ. , vol.179 , pp. 89-103
    • Zarco-Tejada, P.J.1
  • 34
    • 84962481259 scopus 로고    scopus 로고
    • Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies
    • Pinto, F., et al. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39 (2016), 1500–1512.
    • (2016) Plant Cell Environ. , vol.39 , pp. 1500-1512
    • Pinto, F.1
  • 35
    • 84973500642 scopus 로고    scopus 로고
    • Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize
    • Wagle, P., et al. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize. Ecol. Appl. 26 (2016), 1211–1222.
    • (2016) Ecol. Appl. , vol.26 , pp. 1211-1222
    • Wagle, P.1
  • 36
    • 81355127583 scopus 로고    scopus 로고
    • Spectroscopy of canopy chemicals in humid tropical forests
    • Asner, G.P., et al. Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens. Environ. 116 (2011), 3587–3598.
    • (2011) Remote Sens. Environ. , vol.116 , pp. 3587-3598
    • Asner, G.P.1
  • 37
    • 84913553499 scopus 로고    scopus 로고
    • Quantifying forest canopy traits: imaging spectroscopy versus field survey
    • Asner, G.P., et al. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158 (2015), 15–27.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 15-27
    • Asner, G.P.1
  • 38
    • 84555204870 scopus 로고    scopus 로고
    • Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature
    • Serbins, S., et al. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. J. Exp. Bot. 63 (2012), 489–502.
    • (2012) J. Exp. Bot. , vol.63 , pp. 489-502
    • Serbins, S.1
  • 39
    • 85008622688 scopus 로고    scopus 로고
    • High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance
    • Yendrek, C.R., et al. High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol. 173 (2017), 614–626.
    • (2017) Plant Physiol. , vol.173 , pp. 614-626
    • Yendrek, C.R.1
  • 40
    • 85041220026 scopus 로고    scopus 로고
    • Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
    • Silva-Perez, V., et al. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 69 (2017), 483–496.
    • (2017) J. Exp. Bot. , vol.69 , pp. 483-496
    • Silva-Perez, V.1
  • 41
    • 84962812272 scopus 로고    scopus 로고
    • Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis
    • Prins, A., et al. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. J. Exp. Bot. 67 (2016), 1827–1838.
    • (2016) J. Exp. Bot. , vol.67 , pp. 1827-1838
    • Prins, A.1
  • 42
    • 84939543001 scopus 로고    scopus 로고
    • Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review
    • Sankaran, S., et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur. J. Agron. 70 (2015), 112–123.
    • (2015) Eur. J. Agron. , vol.70 , pp. 112-123
    • Sankaran, S.1
  • 43
    • 84855870398 scopus 로고    scopus 로고
    • Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes
    • Weber, V.S., et al. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res. 128 (2012), 82–90.
    • (2012) Field Crops Res. , vol.128 , pp. 82-90
    • Weber, V.S.1
  • 44
    • 84928813718 scopus 로고    scopus 로고
    • Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes
    • Hernandez, J., et al. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes. Remote Sens. 7 (2015), 2109–2126.
    • (2015) Remote Sens. , vol.7 , pp. 2109-2126
    • Hernandez, J.1
  • 45
    • 85026240057 scopus 로고    scopus 로고
    • Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data
    • Montesinos-López, A., et al. Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data. Plant Methods, 13, 2017, 62.
    • (2017) Plant Methods , vol.13 , pp. 62
    • Montesinos-López, A.1
  • 46
    • 85010390679 scopus 로고    scopus 로고
    • Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open pollinated varieties (OPVs) breeding pipeline
    • Masuka, B., et al. Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open pollinated varieties (OPVs) breeding pipeline. Crop Sci. 57 (2017), 180–191.
    • (2017) Crop Sci. , vol.57 , pp. 180-191
    • Masuka, B.1
  • 47
    • 0033975905 scopus 로고    scopus 로고
    • Five ways to stay green
    • Thomas, H., Howarth, C.J., Five ways to stay green. J. Exp. Bot. 51 (2000), 329–337.
    • (2000) J. Exp. Bot. , vol.51 , pp. 329-337
    • Thomas, H.1    Howarth, C.J.2
  • 48
    • 84956689620 scopus 로고    scopus 로고
    • Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions
    • Friedli, M., et al. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods, 12, 2016, 9.
    • (2016) Plant Methods , vol.12 , pp. 9
    • Friedli, M.1
  • 49
    • 84999274565 scopus 로고    scopus 로고
    • Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements
    • Hämmerle, M., Höfle, B., Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements. Plant Methods, 12, 2016, 50.
    • (2016) Plant Methods , vol.12 , pp. 50
    • Hämmerle, M.1    Höfle, B.2
  • 50
    • 85013408970 scopus 로고    scopus 로고
    • Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice
    • Tanger, P., et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Sci. Rep., 7, 2017, 42839.
    • (2017) Sci. Rep. , vol.7 , pp. 42839
    • Tanger, P.1
  • 51
    • 84966989739 scopus 로고    scopus 로고
    • A high-throughput maize kernel traits scorer based on line-scan imaging
    • Liang, X., et al. A high-throughput maize kernel traits scorer based on line-scan imaging. Measurement 90 (2016), 453–460.
    • (2016) Measurement , vol.90 , pp. 453-460
    • Liang, X.1
  • 52
    • 85004009764 scopus 로고    scopus 로고
    • A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images
    • Miller, N.D., et al. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Plant J. 89 (2017), 169–178.
    • (2017) Plant J. , vol.89 , pp. 169-178
    • Miller, N.D.1
  • 53
    • 85046122802 scopus 로고    scopus 로고
    • Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton
    • Pauli, D., et al. Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton. G3 (Bethesda) 36 (2016), 865–879.
    • (2016) G3 (Bethesda) , vol.36 , pp. 865-879
    • Pauli, D.1
  • 54
    • 85016612459 scopus 로고    scopus 로고
    • TIPS: a system for automated image-based phenotyping of maize tassels
    • Gage, J.L., et al. TIPS: a system for automated image-based phenotyping of maize tassels. Plant Methods, 13, 2017, 21.
    • (2017) Plant Methods , vol.13 , pp. 21
    • Gage, J.L.1
  • 55
    • 84958049448 scopus 로고    scopus 로고
    • Machine learning for high-throughput stress phenotyping in plants
    • Singh, A., et al. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21 (2016), 110–124.
    • (2016) Trends Plant Sci. , vol.21 , pp. 110-124
    • Singh, A.1
  • 56
    • 84988564472 scopus 로고    scopus 로고
    • Using deep learning for image-based plant disease detection
    • Mohanty, S.P., et al. Using deep learning for image-based plant disease detection. Front. Plant Sci., 7, 2016, 1419.
    • (2016) Front. Plant Sci. , vol.7 , pp. 1419
    • Mohanty, S.P.1
  • 57
    • 85028909579 scopus 로고    scopus 로고
    • A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition
    • Fuentes, A., et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors (Basel), 17, 2017, E2022.
    • (2017) Sensors (Basel) , vol.17
    • Fuentes, A.1
  • 58
    • 85017658590 scopus 로고    scopus 로고
    • In-field high-throughput phenotyping of cotton plant height using LiDAR
    • Sun, S., et al. In-field high-throughput phenotyping of cotton plant height using LiDAR. Remote Sens., 9, 2017, 377.
    • (2017) Remote Sens. , vol.9 , pp. 377
    • Sun, S.1
  • 59
    • 85032855617 scopus 로고    scopus 로고
    • PocketPlant3D: analysing canopy structure using a smartphone
    • Confalonieri, R., et al. PocketPlant3D: analysing canopy structure using a smartphone. Biosyst. Eng. 164 (2017), 1–12.
    • (2017) Biosyst. Eng. , vol.164 , pp. 1-12
    • Confalonieri, R.1
  • 60
    • 85012110571 scopus 로고    scopus 로고
    • A new methodology for estimating the grapevine-berry number per cluster using image analysis
    • Aquino, A., et al. A new methodology for estimating the grapevine-berry number per cluster using image analysis. Biosyst. Eng. 156 (2017), 80–95.
    • (2017) Biosyst. Eng. , vol.156 , pp. 80-95
    • Aquino, A.1
  • 61
    • 84900435712 scopus 로고    scopus 로고
    • Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction
    • Cooper, M., et al. Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci. 65 (2014), 311–336.
    • (2014) Crop Pasture Sci. , vol.65 , pp. 311-336
    • Cooper, M.1
  • 62
    • 84930907769 scopus 로고    scopus 로고
    • Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt
    • Gaffney, J., et al. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Sci. 55 (2015), 1608–1618.
    • (2015) Crop Sci. , vol.55 , pp. 1608-1618
    • Gaffney, J.1
  • 63
    • 84905821093 scopus 로고    scopus 로고
    • The importance of phenotypic data analysis for genomic prediction – a case study comparing different spatial models in rye
    • Bernal-Vasquez, A.-M., et al. The importance of phenotypic data analysis for genomic prediction – a case study comparing different spatial models in rye. BMC Genomics, 15, 2014, 646.
    • (2014) BMC Genomics , vol.15 , pp. 646
    • Bernal-Vasquez, A.-M.1
  • 64
    • 84981744893 scopus 로고    scopus 로고
    • ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions
    • Shi, J., et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. 15 (2017), 207–216.
    • (2017) Plant Biotechnol. , vol.15 , pp. 207-216
    • Shi, J.1
  • 65
    • 85046118229 scopus 로고    scopus 로고
    • Spatial models for field trials
    • 1607.08255v1
    • Rodríguez-Álvarez, M.X., et al. Spatial models for field trials. arXiv, 2016 1607.08255v1 https://arxiv.org/pdf/1607.08255.
    • (2016) arXiv
    • Rodríguez-Álvarez, M.X.1
  • 66
    • 84866362330 scopus 로고    scopus 로고
    • I.4 screening experimental designs for quantitative trait loci, association mapping, genotype by environment interaction, and other investigations
    • Federer, W.T., Crossa, J., I.4 screening experimental designs for quantitative trait loci, association mapping, genotype by environment interaction, and other investigations. Front. Physiol., 3, 2012, 156.
    • (2012) Front. Physiol. , vol.3 , pp. 156
    • Federer, W.T.1    Crossa, J.2
  • 67
    • 84932599006 scopus 로고    scopus 로고
    • Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize
    • Zaman-Allah, M., et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods, 11, 2015, 35.
    • (2015) Plant Methods , vol.11 , pp. 35
    • Zaman-Allah, M.1
  • 68
    • 0031919890 scopus 로고    scopus 로고
    • Spatial analysis of multi-environment early generation trials
    • Cullis, B.R., et al. Spatial analysis of multi-environment early generation trials. Biometrics 54 (1998), 1–18.
    • (1998) Biometrics , vol.54 , pp. 1-18
    • Cullis, B.R.1
  • 69
    • 85046154678 scopus 로고    scopus 로고
    • Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data
    • Lado, B., et al. Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data. G3 (Bethesda) 33 (2013), 2105–2114.
    • (2013) G3 (Bethesda) , vol.33 , pp. 2105-2114
    • Lado, B.1
  • 70
    • 85016945168 scopus 로고    scopus 로고
    • Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model
    • Velazco, J.G., et al. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Theor. Appl. Genet. 130 (2017), 1375–1392.
    • (2017) Theor. Appl. Genet. , vol.130 , pp. 1375-1392
    • Velazco, J.G.1
  • 71
    • 85045034307 scopus 로고    scopus 로고
    • Unlocking the potential of plant phenotyping data through integration and data-driven approaches
    • Coppens, F., et al. Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr. Opin. Syst. Biol. 4 (2017), 58–63.
    • (2017) Curr. Opin. Syst. Biol. , vol.4 , pp. 58-63
    • Coppens, F.1
  • 72
    • 85026457441 scopus 로고    scopus 로고
    • Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks
    • Ubbens, J.R., Stavness, I., Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front. Plant Sci., 8, 2017, 1190.
    • (2017) Front. Plant Sci. , vol.8 , pp. 1190
    • Ubbens, J.R.1    Stavness, I.2
  • 73
    • 85025090008 scopus 로고    scopus 로고
    • High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field
    • Shakoor, N., et al. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38 (2017), 184–192.
    • (2017) Curr. Opin. Plant Biol. , vol.38 , pp. 184-192
    • Shakoor, N.1
  • 74
    • 85017336739 scopus 로고    scopus 로고
    • Contribution of crop models to adaptation in wheat
    • Chenu, K., et al. Contribution of crop models to adaptation in wheat. Trends Plants Sci. 22 (2017), 472–490.
    • (2017) Trends Plants Sci. , vol.22 , pp. 472-490
    • Chenu, K.1
  • 75
    • 85006746746 scopus 로고    scopus 로고
    • A brief history of agricultural systems models
    • Jones, J.W., et al. A brief history of agricultural systems models. Agric. Syst. 155 (2017), 240–254.
    • (2017) Agric. Syst. , vol.155 , pp. 240-254
    • Jones, J.W.1
  • 76
    • 85013746834 scopus 로고    scopus 로고
    • From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen-deficient environments
    • Li, T., et al. From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meterol. 237–238 (2017), 246–256.
    • (2017) Agric. For. Meterol. , vol.237-238 , pp. 246-256
    • Li, T.1
  • 77
    • 84929661133 scopus 로고    scopus 로고
    • Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?
    • Parent, B., Tardieu, F., Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?. J. Exp. Bot. 65 (2014), 6179–6189.
    • (2014) J. Exp. Bot. , vol.65 , pp. 6179-6189
    • Parent, B.1    Tardieu, F.2
  • 78
    • 85027940414 scopus 로고    scopus 로고
    • Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches
    • Jin, Z., et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biol. 22 (2016), 3112–3126.
    • (2016) Global Change Biol. , vol.22 , pp. 3112-3126
    • Jin, Z.1
  • 79
    • 80051670989 scopus 로고    scopus 로고
    • Crop-climate models need an overhaul
    • Rötter, R.P., et al. Crop-climate models need an overhaul. Nat. Clim. Change 1 (2011), 175–177.
    • (2011) Nat. Clim. Change , vol.1 , pp. 175-177
    • Rötter, R.P.1
  • 80
    • 84895794881 scopus 로고    scopus 로고
    • Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison
    • Rosenzweig, C., et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 3268–3273.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 3268-3273
    • Rosenzweig, C.1
  • 81
    • 84938602560 scopus 로고    scopus 로고
    • Maize systems under climate change in sub-Saharan Africa: potential impacts on production and food security
    • Tesfaye, K., et al. Maize systems under climate change in sub-Saharan Africa: potential impacts on production and food security. Int. J. Clim. Change Strateg. Manag. 7 (2015), 247–271.
    • (2015) Int. J. Clim. Change Strateg. Manag. , vol.7 , pp. 247-271
    • Tesfaye, K.1
  • 82
    • 85025114987 scopus 로고    scopus 로고
    • The uncertainty of crop yield projections is reduced by improved temperature response functions
    • Wang, E., et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants, 3, 2017, 17102.
    • (2017) Nat. Plants , vol.3 , pp. 17102
    • Wang, E.1
  • 83
    • 85036576257 scopus 로고    scopus 로고
    • Using climate information to support crop breeding decisions and adaptation in agriculture
    • Falloon, P., et al. Using climate information to support crop breeding decisions and adaptation in agriculture. World Agric. 5 (2015), 25–42 http://eprints.whiterose.ac.uk/89022/1/WorldAgriculture_5_1_Falloon.pdf.
    • (2015) World Agric. , vol.5 , pp. 25-42
    • Falloon, P.1
  • 84
    • 85021318536 scopus 로고    scopus 로고
    • Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
    • Tesfaye, K., et al. Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data. Int. Food Agribus. Manag. Rev. 19 (2016), 75–92.
    • (2016) Int. Food Agribus. Manag. Rev. , vol.19 , pp. 75-92
    • Tesfaye, K.1
  • 85
    • 84999634748 scopus 로고    scopus 로고
    • Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars
    • Gbegbelegbe, S., et al. Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars. Field Crops Res. 202 (2017), 122–135.
    • (2017) Field Crops Res. , vol.202 , pp. 122-135
    • Gbegbelegbe, S.1
  • 86
    • 84989181891 scopus 로고    scopus 로고
    • Current warming will reduce yields unless maize breeding and seed systems adapt immediately
    • Challinor, A.J., et al. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6 (2016), 954–958.
    • (2016) Nat. Clim. Change , vol.6 , pp. 954-958
    • Challinor, A.J.1
  • 87
    • 84989327931 scopus 로고    scopus 로고
    • Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios
    • Millet, E.J., et al. Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol. 172 (2016), 749–764.
    • (2016) Plant Physiol. , vol.172 , pp. 749-764
    • Millet, E.J.1
  • 88
    • 84952861309 scopus 로고    scopus 로고
    • Comparative performance of remote sensing methods in assessing wheat performance under Mediterranean conditions
    • Yousfi, S., et al. Comparative performance of remote sensing methods in assessing wheat performance under Mediterranean conditions. Agric. Water Manag. 164 (2016), 137–147.
    • (2016) Agric. Water Manag. , vol.164 , pp. 137-147
    • Yousfi, S.1
  • 89
    • 84969540531 scopus 로고    scopus 로고
    • A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization
    • Vergara-Díaz, O., et al. A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front. Plant Sci., 7, 2016, 666.
    • (2016) Front. Plant Sci. , vol.7 , pp. 666
    • Vergara-Díaz, O.1
  • 90
    • 84949034917 scopus 로고    scopus 로고
    • Detecting interactive effects of N fertilization and heat stress on maize productivity by remote sensing techniques
    • Elazab, A., et al. Detecting interactive effects of N fertilization and heat stress on maize productivity by remote sensing techniques. Eur. J. Agron. 73 (2016), 11–24.
    • (2016) Eur. J. Agron. , vol.73 , pp. 11-24
    • Elazab, A.1
  • 91
    • 85009074802 scopus 로고    scopus 로고
    • Grain yield loss assessment for winter wheat associated with the fungus Puccinia striiformis f. sp. tritici using digital and conventional parameters under field conditions
    • Vergara-Diaz, O., et al. Grain yield loss assessment for winter wheat associated with the fungus Puccinia striiformis f. sp. tritici using digital and conventional parameters under field conditions. Crop J. 3 (2015), 200–210.
    • (2015) Crop J. , vol.3 , pp. 200-210
    • Vergara-Diaz, O.1
  • 92
    • 84934959123 scopus 로고    scopus 로고
    • Low-cost assessment of wheat resistance to yellow rust through conventional RGB images
    • Zhou, B., et al. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. 116 (2015), 20–29.
    • (2015) Comput. Electron. Agric. , vol.116 , pp. 20-29
    • Zhou, B.1
  • 93
    • 85019712461 scopus 로고    scopus 로고
    • Mappingsmallholder wheat yields and sowing dates using micro-satellite data
    • Jain, M., et al. Mappingsmallholder wheat yields and sowing dates using micro-satellite data. Remote Sens., 8, 2016, 860.
    • (2016) Remote Sens. , vol.8 , pp. 860
    • Jain, M.1
  • 94
    • 84994203021 scopus 로고    scopus 로고
    • 3D quantification of plant root architecture in situ
    • Springer
    • Fang, S., et al. 3D quantification of plant root architecture in situ. Measuring Roots, 2012, Springer, 135–148.
    • (2012) Measuring Roots , pp. 135-148
    • Fang, S.1
  • 95
    • 84962009147 scopus 로고    scopus 로고
    • A survey of computer vision methods for counting fruits and yield prediction
    • Syal, A., A survey of computer vision methods for counting fruits and yield prediction. IJCSE 2 (2013), 346–350.
    • (2013) IJCSE , vol.2 , pp. 346-350
    • Syal, A.1
  • 96
    • 84934980536 scopus 로고    scopus 로고
    • Sensors and systems for fruit detection and localization: a review
    • Gongal, A., et al. Sensors and systems for fruit detection and localization: a review. Comput. Electron. Agric. 116 (2015), 8–19.
    • (2015) Comput. Electron. Agric. , vol.116 , pp. 8-19
    • Gongal, A.1
  • 97
    • 84945333626 scopus 로고    scopus 로고
    • LiDAR: an important tool for next-generation phenotyping technology of high potential for plant phenomics?
    • Lin, Y., LiDAR: an important tool for next-generation phenotyping technology of high potential for plant phenomics?. Comput. Electron. Agric. 119 (2015), 61–73.
    • (2015) Comput. Electron. Agric. , vol.119 , pp. 61-73
    • Lin, Y.1
  • 98
    • 84878754086 scopus 로고    scopus 로고
    • A flexible, low-cost cart for proximal sensing
    • White, J.W., Conley, M.M., A flexible, low-cost cart for proximal sensing. Crop Sci. 53 (2013), 1646–1649.
    • (2013) Crop Sci. , vol.53 , pp. 1646-1649
    • White, J.W.1    Conley, M.M.2
  • 99
    • 84874780417 scopus 로고    scopus 로고
    • Feasibility of employing a smartphone as the payload in a photogrammetric UAV system
    • Kim, J., et al. Feasibility of employing a smartphone as the payload in a photogrammetric UAV system. ISPRS J. Photogramm. Remote Sens. 79 (2013), 1–18.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.79 , pp. 1-18
    • Kim, J.1
  • 100
    • 84922998703 scopus 로고    scopus 로고
    • UAVs challenge to assess water stress for sustainable agriculture
    • Gago, J., et al. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 153 (2015), 9–19.
    • (2015) Agric. Water Manag. , vol.153 , pp. 9-19
    • Gago, J.1
  • 101
    • 84975755388 scopus 로고    scopus 로고
    • Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries
    • Haghighattalab, A., et al. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods, 12, 2016, 35.
    • (2016) Plant Methods , vol.12 , pp. 35
    • Haghighattalab, A.1
  • 102
    • 85027868758 scopus 로고    scopus 로고
    • Commercial Satellite Imagery as an Evolving Open-Source Verification Technology: Emerging Trends and Their Impact for Nuclear Nonproliferation Analysis (Rep. No. EUR27687)
    • European Commission
    • Pabian, F., Commercial Satellite Imagery as an Evolving Open-Source Verification Technology: Emerging Trends and Their Impact for Nuclear Nonproliferation Analysis (Rep. No. EUR27687). 2015, European Commission.
    • (2015)
    • Pabian, F.1
  • 103
    • 85019712461 scopus 로고    scopus 로고
    • Mapping smallholder wheat yields and sowing dates using micro-satellite data
    • Jain, M., et al. Mapping smallholder wheat yields and sowing dates using micro-satellite data. Remote Sens., 8, 2016, 860.
    • (2016) Remote Sens. , vol.8 , pp. 860
    • Jain, M.1
  • 104
    • 84871588375 scopus 로고    scopus 로고
    • A multisite managed environment facility for targeted trait and germplasm phenotyping
    • Rebetzke, G.J., et al. A multisite managed environment facility for targeted trait and germplasm phenotyping. Funct. Plant Biol. 40 (2013), 1–13.
    • (2013) Funct. Plant Biol. , vol.40 , pp. 1-13
    • Rebetzke, G.J.1
  • 105
    • 84923012445 scopus 로고    scopus 로고
    • Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping
    • Chapman, S.C., et al. Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4 (2014), 279–301.
    • (2014) Agronomy , vol.4 , pp. 279-301
    • Chapman, S.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.