메뉴 건너뛰기




Volumn 210, Issue , 2018, Pages 35-47

A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach

Author keywords

Crop type classification; Deep Neural Network (DNN); Machine learning; Phenology; Remote sensing

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOLOGY; COST EFFECTIVENESS; CROPS; DECISION MAKING; DEEP NEURAL NETWORKS; DISTRIBUTED COMPUTER SYSTEMS; ELECTRONIC TRADING; INFRARED DEVICES; LEARNING SYSTEMS; REMOTE SENSING; SUPPLY CHAINS; TIME SERIES;

EID: 85043598532     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2018.02.045     Document Type: Article
Times cited : (395)

References (52)
  • 1
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton, D.K., Friedl, M.A., Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173 (2013), 74–84, 10.1016/j.agrformet.2013.01.007.
    • (2013) Agric. For. Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 2
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
    • Boryan, C., Yang, Z., Mueller, R., Craig, M., Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26:5 (2011), 341–358, 10.1080/10106049.2011.562309.
    • (2011) Geocarto Int. , vol.26 , Issue.5 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 3
    • 36448968934 scopus 로고    scopus 로고
    • Corn and soybean mapping in the United States using MODIS time-series data sets
    • Chang, J., Hansen, M.C., Pittman, K., Carroll, M., DiMiceli, C., Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J., 99(6), 2007, 1654, 10.2134/agronj2007.0170.
    • (2007) Agron. J. , vol.99 , Issue.6 , pp. 1654
    • Chang, J.1    Hansen, M.C.2    Pittman, K.3    Carroll, M.4    DiMiceli, C.5
  • 5
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C., Franklin, S.E., Dubé, M.G., A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118 (2012), 259–272, 10.1016/j.rse.2011.11.020.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 6
    • 84907478735 scopus 로고    scopus 로고
    • Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: a study in the Australian landscape
    • Flood, N., Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: a study in the Australian landscape. Remote Sens. 6 (2014), 7952–7970, 10.3390/rs6097952.
    • (2014) Remote Sens. , vol.6 , pp. 7952-7970
    • Flood, N.1
  • 7
    • 84865820031 scopus 로고    scopus 로고
    • Crop type mapping using spectral–temporal profiles and phenological information
    • Foerster, S., Kaden, K., Foerster, M., Itzerott, S., Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 89 (2012), 30–40, 10.1016/j.compag.2012.07.015.
    • (2012) Comput. Electron. Agric. , vol.89 , pp. 30-40
    • Foerster, S.1    Kaden, K.2    Foerster, M.3    Itzerott, S.4
  • 8
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
    • Gao, F., Masek, J., Schwaller, M., Hall, F., On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44:8 (2006), 2207–2218, 10.1109/TGRS.2006.872081.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 9
    • 84887963174 scopus 로고    scopus 로고
    • Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring
    • W. Gao T.J. Jackson J. Wang N.-B. Chang
    • Gao, F., Wang, P., Masek, J., Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring. Gao, W., Jackson, T.J., Wang, J., Chang, N.-B., (eds.) International Society for Optics and Photonics, 2013, 886903, 10.1117/12.2023417.
    • (2013) International Society for Optics and Photonics , pp. 886903
    • Gao, F.1    Wang, P.2    Masek, J.3
  • 12
    • 53849126471 scopus 로고    scopus 로고
    • Estimating crop water stress with ETM+ NIR and SWIR data
    • Ghulam, A., Li, Z.-L., Qin, Q., Yimit, H., Wang, J., Estimating crop water stress with ETM+ NIR and SWIR data. Agric. For. Meteorol. 148:11 (2008), 1679–1695, 10.1016/j.agrformet.2008.05.020.
    • (2008) Agric. For. Meteorol. , vol.148 , Issue.11 , pp. 1679-1695
    • Ghulam, A.1    Li, Z.-L.2    Qin, Q.3    Yimit, H.4    Wang, J.5
  • 13
    • 0043202687 scopus 로고    scopus 로고
    • Remote estimation of leaf area index and green leaf biomass in maize canopies
    • n/a-n/a
    • Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G., Leavitt, B., Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett., 30(5), 2003 n/a-n/a https://doi.org/10.1029/2002GL016450.
    • (2003) Geophys. Res. Lett. , vol.30 , Issue.5
    • Gitelson, A.A.1    Viña, A.2    Arkebauer, T.J.3    Rundquist, D.C.4    Keydan, G.5    Leavitt, B.6
  • 14
    • 84865427954 scopus 로고    scopus 로고
    • A review of large area monitoring of land cover change using Landsat data
    • Hansen, M.C., Loveland, T.R., A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122 (2012), 66–74, 10.1016/j.rse.2011.08.024.
    • (2012) Remote Sens. Environ. , vol.122 , pp. 66-74
    • Hansen, M.C.1    Loveland, T.R.2
  • 15
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1 km spatial resolution using a classification tree approach
    • Hansen, M.C., Defries, R.S., Townshend, J.R.G., Sohlberg, R., Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 21:6–7 (2000), 1331–1364, 10.1080/014311600210209.
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.6-7 , pp. 1331-1364
    • Hansen, M.C.1    Defries, R.S.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 16
    • 80051985673 scopus 로고    scopus 로고
    • Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project
    • Hansen, M.C., Egorov, A., Roy, D.P., Potapov, P., Ju, J., Turubanova, S., Kommareddy, I., Loveland, T.R., Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett. 2:4 (2011), 279–288, 10.1080/01431161.2010.519002.
    • (2011) Remote Sens. Lett. , vol.2 , Issue.4 , pp. 279-288
    • Hansen, M.C.1    Egorov, A.2    Roy, D.P.3    Potapov, P.4    Ju, J.5    Turubanova, S.6    Kommareddy, I.7    Loveland, T.R.8
  • 19
    • 4143112403 scopus 로고    scopus 로고
    • Development of a 2001 national land-cover database for the United States
    • Homer, C., Huang, C., Yang, L., Wylie, B., Coan, M., Development of a 2001 national land-cover database for the United States. Photogramm. Eng. Remote Sens. 70:7 (2004), 829–840, 10.14358/PERS.70.7.829.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.7 , pp. 829-840
    • Homer, C.1    Huang, C.2    Yang, L.3    Wylie, B.4    Coan, M.5
  • 20
    • 33845980234 scopus 로고    scopus 로고
    • Land-cover classification using radarsat and Landsat imagery for St. Louis, Missouri
    • Huang, H., Legarsky, J., Othman, M., Land-cover classification using radarsat and Landsat imagery for St. Louis, Missouri. Photogramm. Eng. Remote Sens. 73:1 (2007), 37–43, 10.14358/PERS.73.1.37.
    • (2007) Photogramm. Eng. Remote Sens. , vol.73 , Issue.1 , pp. 37-43
    • Huang, H.1    Legarsky, J.2    Othman, M.3
  • 21
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83:1 (2002), 195–213, 10.1016/S0034-4257(02)00096-2.
    • (2002) Remote Sens. Environ. , vol.83 , Issue.1 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.4    Gao, X.5    Ferreira, L.6
  • 22
    • 0036699946 scopus 로고    scopus 로고
    • Seasonality extraction by function fitting to time-series of satellite sensor data
    • Jonsson, P., Eklundh, L., Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 40:8 (2002), 1824–1832, 10.1109/TGRS.2002.802519.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.8 , pp. 1824-1832
    • Jonsson, P.1    Eklundh, L.2
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet Classification With Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet Classification With Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems. 2012.
    • (2012)
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444, 10.1038/nature14539.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 26
    • 84893421363 scopus 로고    scopus 로고
    • Cross-comparison of vegetation indices derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors
    • Li, P., Jiang, L., Feng, Z., Cross-comparison of vegetation indices derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors. Remote Sens. 6 (2013), 310–329, 10.3390/rs6010310.
    • (2013) Remote Sens. , vol.6 , pp. 310-329
    • Li, P.1    Jiang, L.2    Feng, Z.3
  • 27
    • 26944433785 scopus 로고    scopus 로고
    • Spatial and temporal patterns of China's cropland during 1990–2000: an analysis based on Landsat TM data
    • Liu, J., Liu, M., Tian, H., Zhuang, D., Zhang, Z., Zhang, W., Tang, X., Deng, X., Spatial and temporal patterns of China's cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens. Environ. 98:4 (2005), 442–456, 10.1016/j.rse.2005.08.012.
    • (2005) Remote Sens. Environ. , vol.98 , Issue.4 , pp. 442-456
    • Liu, J.1    Liu, M.2    Tian, H.3    Zhuang, D.4    Zhang, Z.5    Zhang, W.6    Tang, X.7    Deng, X.8
  • 28
    • 84875549888 scopus 로고    scopus 로고
    • The use of satellite data for crop yield gap analysis
    • Lobell, D.B., The use of satellite data for crop yield gap analysis. F. Crop. Res. 143 (2013), 56–64, 10.1016/j.fcr.2012.08.008.
    • (2013) F. Crop. Res. , vol.143 , pp. 56-64
    • Lobell, D.B.1
  • 29
    • 5044236302 scopus 로고    scopus 로고
    • Cropland distributions from temporal unmixing of MODIS data
    • Lobell, D.B., Asner, G.P., Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 93:3 (2004), 412–422, 10.1016/j.rse.2004.08.002.
    • (2004) Remote Sens. Environ. , vol.93 , Issue.3 , pp. 412-422
    • Lobell, D.B.1    Asner, G.P.2
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323 (1986), 533–536, 10.1038/323533a0.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117, 10.1016/j.neunet.2014.09.003.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 34
    • 84908340188 scopus 로고    scopus 로고
    • Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description
    • US Geological Survey
    • Schmidt, G., Jenkerson, C., Masek, J., Vermote, E., Gao, F., Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description. 2013, US Geological Survey.
    • (2013)
    • Schmidt, G.1    Jenkerson, C.2    Masek, J.3    Vermote, E.4    Gao, F.5
  • 35
    • 0027007605 scopus 로고
    • Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme
    • Sellers, P.J., Berry, J.A., Collatz, G.J., Field, C.B., Hall, F.G., Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 42:3 (1992), 187–216, 10.1016/0034-4257(92)90102-P.
    • (1992) Remote Sens. Environ. , vol.42 , Issue.3 , pp. 187-216
    • Sellers, P.J.1    Berry, J.A.2    Collatz, G.J.3    Field, C.B.4    Hall, F.G.5
  • 36
    • 84882659985 scopus 로고    scopus 로고
    • Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error
    • Sexton, J.O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D.-H., Collins, K.M., Channan, S., DiMiceli, C., Townshend, J.R., Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 6:5 (2013), 427–448, 10.1080/17538947.2013.786146.
    • (2013) Int. J. Digit. Earth , vol.6 , Issue.5 , pp. 427-448
    • Sexton, J.O.1    Song, X.-P.2    Feng, M.3    Noojipady, P.4    Anand, A.5    Huang, C.6    Kim, D.-H.7    Collins, K.M.8    Channan, S.9    DiMiceli, C.10    Townshend, J.R.11
  • 37
    • 84868583959 scopus 로고    scopus 로고
    • Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record
    • Sexton, J.O., Urban, D.L., Donohue, M.J., Song, C., Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens. Environ. 128 (2013), 246–258, 10.1016/j.rse.2012.10.010.
    • (2013) Remote Sens. Environ. , vol.128 , pp. 246-258
    • Sexton, J.O.1    Urban, D.L.2    Donohue, M.J.3    Song, C.4
  • 40
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J., Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:2 (1979), 127–150, 10.1016/0034-4257(79)90013-0.
    • (1979) Remote Sens. Environ. , vol.8 , Issue.2 , pp. 127-150
    • Tucker, C.J.1
  • 41
    • 85043588307 scopus 로고    scopus 로고
    • 2012 Census of Agriculture – Champaign County, Illinois
    • USDA, 2012 Census of Agriculture – Champaign County, Illinois. 2012.
    • (2012)
    • USDA1
  • 42
    • 84979559919 scopus 로고    scopus 로고
    • Landsat Surface Reflectance Higher-level Data Products [WWW Document]
    • (Accessed 22 April 2016)
    • USGS, Landsat Surface Reflectance Higher-level Data Products [WWW Document]. http://landsat.usgs.gov/CDR_LSR.php, 2016. (Accessed 22 April 2016)
    • (2016)
    • USGS1
  • 43
    • 9244238755 scopus 로고    scopus 로고
    • Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia
    • Van Niel, T.G., McVicar, T.R., Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia. Comput. Electron. Agric. 45:1 (2004), 91–108, 10.1016/j.compag.2004.06.003.
    • (2004) Comput. Electron. Agric. , vol.45 , Issue.1 , pp. 91-108
    • Van Niel, T.G.1    McVicar, T.R.2
  • 44
    • 0034983211 scopus 로고    scopus 로고
    • Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources
    • Vogelmann, J.E., Howard, S.M., Yang, L., Larson, C.R., Wylie, B.K., Van Driel, N., Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sens., 67(6), 2001.
    • (2001) Photogramm. Eng. Remote Sens. , vol.67 , Issue.6
    • Vogelmann, J.E.1    Howard, S.M.2    Yang, L.3    Larson, C.R.4    Wylie, B.K.5    Van Driel, N.6
  • 45
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains
    • Wardlow, B.D., Egbert, S.L., Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sens. Environ. 112:3 (2008), 1096–1116, 10.1016/j.rse.2007.07.019.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.3 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 46
    • 34247523027 scopus 로고    scopus 로고
    • Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains
    • Wardlow, B.D., Egbert, S.L., Kastens, J.H., Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 108:3 (2007), 290–310, 10.1016/j.rse.2006.11.021.
    • (2007) Remote Sens. Environ. , vol.108 , Issue.3 , pp. 290-310
    • Wardlow, B.D.1    Egbert, S.L.2    Kastens, J.H.3
  • 47
    • 0036788924 scopus 로고    scopus 로고
    • Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data
    • Xiao, X., Boles, S., Liu, J., Zhuang, D., Liu, M., Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82:2 (2002), 335–348, 10.1016/S0034-4257(02)00051-2.
    • (2002) Remote Sens. Environ. , vol.82 , Issue.2 , pp. 335-348
    • Xiao, X.1    Boles, S.2    Liu, J.3    Zhuang, D.4    Liu, M.5
  • 48
    • 29244490029 scopus 로고    scopus 로고
    • Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
    • Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J.Y., Salas, W., Moore, B., Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100:1 (2006), 95–113, 10.1016/j.rse.2005.10.004.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.1 , pp. 95-113
    • Xiao, X.1    Boles, S.2    Frolking, S.3    Li, C.4    Babu, J.Y.5    Salas, W.6    Moore, B.7
  • 49
    • 79551684301 scopus 로고    scopus 로고
    • Evaluating high resolution SPOT 5 satellite imagery for crop identification
    • Yang, C., Everitt, J.H., Murden, D., Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput. Electron. Agric. 75:2 (2011), 347–354, 10.1016/j.compag.2010.12.012.
    • (2011) Comput. Electron. Agric. , vol.75 , Issue.2 , pp. 347-354
    • Yang, C.1    Everitt, J.H.2    Murden, D.3
  • 50
    • 85021083915 scopus 로고    scopus 로고
    • Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data
    • AAAI
    • You, J., Li, X., Low, M., Lobell, D., Ermon, S., Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data. 2017, AAAI.
    • (2017)
    • You, J.1    Li, X.2    Low, M.3    Lobell, D.4    Ermon, S.5
  • 51
    • 25844497537 scopus 로고    scopus 로고
    • Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing
    • Yuan, F., Sawaya, K.E., Loeffelholz, B.C., Bauer, M.E., Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 98:2 (2005), 317–328, 10.1016/j.rse.2005.08.006.
    • (2005) Remote Sens. Environ. , vol.98 , Issue.2 , pp. 317-328
    • Yuan, F.1    Sawaya, K.E.2    Loeffelholz, B.C.3    Bauer, M.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.