메뉴 건너뛰기




Volumn 27, Issue 6, 2018, Pages 2623-2634

Diverse region-based CNN for hyperspectral image classification

Author keywords

Convolutional neural network; Deep learning; Hyperspectral image; Pattern recognition

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CONVOLUTION; DATA MINING; DEEP LEARNING; FEATURE EXTRACTION; HYPERSPECTRAL IMAGING; LEARNING SYSTEMS; NEURAL NETWORKS; PATTERN RECOGNITION; PIXELS; SEMANTICS; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 85042846011     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2018.2809606     Document Type: Article
Times cited : (508)

References (50)
  • 2
    • 84941419455 scopus 로고    scopus 로고
    • Combined sparse and collaborative representation for hyperspectral target detection
    • W. Li, Q. Du, and B. Zhang, "Combined sparse and collaborative representation for hyperspectral target detection," Pattern Recognit., Vol. 48, no. 12, pp. 3904-3916, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.12 , pp. 3904-3916
    • Li, W.1    Du, Q.2    Zhang, B.3
  • 3
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
    • Jan.
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., Vol. 51, no. 1, pp. 257-272, Jan. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 4
    • 35348881574 scopus 로고    scopus 로고
    • Kernel eigenspace separation transform for Subspace anomaly detection in hyperspectral imagery
    • Oct.
    • H. Goldberg, H. Kwon, and N. M. Nasrabadi, "Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., Vol. 4, no. 4, pp. 581-585, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 581-585
    • Goldberg, H.1    Kwon, H.2    Nasrabadi, N.M.3
  • 5
    • 85046293389 scopus 로고    scopus 로고
    • Hyperspectral CNN for image classification & band selection, with application to face recognition
    • ESAT, Leuven, Belgium, Tech. Rep. KUL/ESAT/PSI/1604, Dec.
    • S. Vivek, D. Ali, T. Tinne, and V. G. Luc, "Hyperspectral CNN for image classification & band selection, with application to face recognition," KU Leuven, ESAT, Leuven, Belgium, Tech. Rep. KUL/ESAT/PSI/1604, Dec. 2016.
    • (2016) KU Leuven
    • Vivek, S.1    Ali, D.2    Tinne, T.3    Luc, V.G.4
  • 7
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Jan.
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., Vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 8
    • 85020744062 scopus 로고    scopus 로고
    • Hyperspectral image classification based on multiscale spatial information fusion
    • Sep.
    • H. Li, Y. Song, and C. L. Philip Chen, "Hyperspectral image classification based on multiscale spatial information fusion," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 9, pp. 5302-5312, Sep. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.9 , pp. 5302-5312
    • Li, H.1    Song, Y.2    Philip Chen, C.L.3
  • 9
    • 85021807370 scopus 로고    scopus 로고
    • Dimensionality reduction by spatial-spectral preservation in selected bands
    • Sep.
    • X. Zheng, Y. Yuan, and X. Lu, "Dimensionality reduction by spatial-spectral preservation in selected bands," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 9, pp. 5185-5197, Sep. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.9 , pp. 5185-5197
    • Zheng, X.1    Yuan, Y.2    Lu, X.3
  • 10
    • 85046059619 scopus 로고    scopus 로고
    • Using CNN to classify hyperspectral data based on spatial-spectral information
    • Kaohsiung, Taiwan, Nov.
    • L. Lin and X. Song, "Using CNN to classify hyperspectral data based on spatial-spectral information," in Proc. Int. Conf. Intell. Inf. Hiding Multimedia Signal Process., Kaohsiung, Taiwan, Nov. 2016, pp. 61-68.
    • (2016) Proc. Int. Conf. Intell. Inf. Hiding Multimedia Signal Process. , pp. 61-68
    • Lin, L.1    Song, X.2
  • 11
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, Vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 13
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • Jun.
    • E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle," IEEE Trans. Geosci. Remote Sens., Vol. 46, no. 6, pp. 1804-1811, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 14
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector Machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., Vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 15
    • 84890123096 scopus 로고    scopus 로고
    • Spatial-spectral kernel sparse representation for hyperspectral image classification
    • Dec.
    • J. Liu, Z. Wu, Z. Wei, L. Xiao, and L. Sun, "Spatial-spectral kernel sparse representation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 6, no. 6, pp. 2462-2471, Dec. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.6 , pp. 2462-2471
    • Liu, J.1    Wu, Z.2    Wei, Z.3    Xiao, L.4    Sun, L.5
  • 16
    • 84951009176 scopus 로고    scopus 로고
    • A survey on representation-based classification and detection in hyperspectral remote sensing imagery
    • Nov.
    • W. Li and Q. Du, "A survey on representation-based classification and detection in hyperspectral remote sensing imagery," Pattern Recognit. Lett., Vol. 83, no. 2, pp. 115-123, Nov. 2015.
    • (2015) Pattern Recognit. Lett. , vol.83 , Issue.2 , pp. 115-123
    • Li, W.1    Du, Q.2
  • 17
    • 84925296587 scopus 로고    scopus 로고
    • Local binary patterns and extreme learning Machine for hyperspectral imagery classification
    • Jul.
    • W. Li, C. Chen, H. Su, and Q. Du, "Local binary patterns and extreme learning machine for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., Vol. 53, no. 7, pp. 3681-3693, Jul. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3681-3693
    • Li, W.1    Chen, C.2    Su, H.3    Du, Q.4
  • 18
    • 85027937532 scopus 로고    scopus 로고
    • Active learning with Gaussian process classifier for hyperspectral image classification
    • Apr.
    • S. Sun, P. Zhong, H. Xiao, and R. Wang, "Active learning with Gaussian process classifier for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., Vol. 53, no. 4, pp. 1746-1760, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 1746-1760
    • Sun, S.1    Zhong, P.2    Xiao, H.3    Wang, R.4
  • 19
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification using relevance vector Machine
    • Jun.
    • F. A. Mianji and Y. Zhang, "Robust hyperspectral classification using relevance vector machine," IEEE Trans. Geosci. Remote Sens., Vol. 49, no. 6, pp. 2100-2112, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2100-2112
    • Mianji, F.A.1    Zhang, Y.2
  • 21
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., Vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 22
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using Subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Geosci. Remote Sens. Lett., Vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 23
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., Vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 24
    • 84952685590 scopus 로고    scopus 로고
    • Deep learning-based man-made object detection from hyperspectral data
    • Las Vegas, NV, USA, Dec.
    • K. Makantasis, K. Karantzalos, A. Doulamis, and M. Loupos, "Deep learning-based man-made object detection from hyperspectral data," in Proc. Int. Symp. Vis. Comput., Las Vegas, NV, USA, Dec. 2016, pp. 717-727.
    • (2016) Proc. Int. Symp. Vis. Comput. , pp. 717-727
    • Makantasis, K.1    Karantzalos, K.2    Doulamis, A.3    Loupos, M.4
  • 25
    • 85019010234 scopus 로고    scopus 로고
    • Deep recurrent neural networks for hyperspectral image classification
    • Jul.
    • L. Mou, P. Ghamisi, and X. X. Zhu, "Deep recurrent neural networks for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 7, pp. 3639-3655, Jul. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3639-3655
    • Mou, L.1    Ghamisi, P.2    Zhu, X.X.3
  • 26
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., Vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 27
    • 85013301566 scopus 로고    scopus 로고
    • Training deep convolutional neural networks for land-cover classification of high-resolution imagery
    • Apr.
    • G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis, "Training deep convolutional neural networks for land-cover classification of high-resolution imagery," IEEE Geosci. Remote Sens. Lett., Vol. 14, no. 4, pp. 549-553, Apr. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.4 , pp. 549-553
    • Scott, G.J.1    England, M.R.2    Starms, W.A.3    Marcum, R.A.4    Davis, C.H.5
  • 28
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Nov.
    • Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett., Vol. 12, no. 11, pp. 2321-2325, Nov. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.11 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4
  • 30
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., Vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 32
    • 84959139728 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyper-spectral image based on deep auto-encoder
    • Sep.
    • X. Ma, H. Wang, and J. Geng, "Spectral-spatial classification of hyper-spectral image based on deep auto-encoder," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 9, no. 9, pp. 4073-4085, Sep. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.9 , pp. 4073-4085
    • Ma, X.1    Wang, H.2    Geng, J.3
  • 33
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Jan.
    • W. Hu, Y. Huang, W. Li, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sensors, Vol. 2015, Jan. 2015, Art. no. 258619.
    • (2015) J. Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Li, W.3    Zhang, F.4    Li, H.5
  • 35
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyperspectral data classification through con-volutional neural networks
    • Milan, Italy, Jul.
    • K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through con-volutional neural networks," in Proc. IGARSS, Milan, Italy, Jul. 2015, pp. 4959-4962.
    • (2015) Proc. IGARSS , pp. 4959-4962
    • Makantasis, K.1    Karantzalos, K.2    Doulamis, A.3    Doulamis, N.4
  • 36
    • 85018902434 scopus 로고    scopus 로고
    • Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks
    • Aug.
    • S. Mei, J. Ji, J. Hou, X. Li, and Q. Du, "Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 8, pp. 4520-4533, Aug. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.8 , pp. 4520-4533
    • Mei, S.1    Ji, J.2    Hou, J.3    Li, X.4    Du, Q.5
  • 37
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    • May
    • J. Yue, W. Zhao, S. Mao, and H. Liu, "Spectral-spatial classification of hyperspectral images using deep convolutional neural networks," Remote Sens. Lett., Vol. 6, no. 6, pp. 468-477, May 2015.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 38
    • 84995529466 scopus 로고    scopus 로고
    • Hyperspectral image classification using deep pixel-pair features
    • Feb.
    • W. Li, G. Wu, F. Zhang, and Q. Du, "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 2, pp. 844-853, Feb. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 844-853
    • Li, W.1    Wu, G.2    Zhang, F.3    Du, Q.4
  • 39
    • 85023605626 scopus 로고    scopus 로고
    • Going deeper with contextual CNN for hyper-spectral image classification
    • Oct.
    • H. Lee and H. Kwon, "Going deeper with contextual CNN for hyper-spectral image classification," IEEE Trans. Image Process., Vol. 26, no. 10, pp. 4843-4855, Oct. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.10 , pp. 4843-4855
    • Lee, H.1    Kwon, H.2
  • 40
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyper-spectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyper-spectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 41
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Sep.
    • K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 37, no. 9, pp. 1904-1916, Sep. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 42
    • 85005950673 scopus 로고    scopus 로고
    • Human parsing with contextualized convolutional neural network
    • Jan.
    • X. Liang et al., "Human parsing with contextualized convolutional neural network," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, no. 1, pp. 115-127, Jan. 2016.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.1 , pp. 115-127
    • Liang, X.1
  • 46
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann Machines
    • Haifa, Israel, Jun
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 21-24.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 21-24
    • Nair, V.1    Hinton, G.E.2
  • 47
    • 84890436374 scopus 로고    scopus 로고
    • Nearest regularized Subspace for hyperspectral classification
    • Jan.
    • W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, "Nearest regularized subspace for hyperspectral classification," IEEE Trans. Geosci. Remote Sens., Vol. 52, no. 1, pp. 477-489, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 477-489
    • Li, W.1    Tramel, E.W.2    Prasad, S.3    Fowler, J.E.4
  • 48
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Sardinia, Italy, May
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. AISTATS, Sardinia, Italy, May 2010, pp. 249-256.
    • (2010) Proc. AISTATS , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 50
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector Machines to random feature selection in classification of hyperspectral data
    • Jul.
    • B. Waske, S. van der Linden, J. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., Vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Van Der Linden, S.2    Benediktsson, J.3    Rabe, A.4    Hostert, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.