-
1
-
-
85027918861
-
Projection-based NMF for hyperspectral unmixing
-
Jun.
-
Y. Yuan, Y. Feng, and X. Lu, "Projection-based NMF for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 8, no. 6, pp. 2632-2643, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2632-2643
-
-
Yuan, Y.1
Feng, Y.2
Lu, X.3
-
2
-
-
84941419455
-
Combined sparse and collaborative representation for hyperspectral target detection
-
W. Li, Q. Du, and B. Zhang, "Combined sparse and collaborative representation for hyperspectral target detection," Pattern Recognit., Vol. 48, no. 12, pp. 3904-3916, 2015.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.12
, pp. 3904-3916
-
-
Li, W.1
Du, Q.2
Zhang, B.3
-
3
-
-
84871748730
-
An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
-
Jan.
-
X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., Vol. 51, no. 1, pp. 257-272, Jan. 2012.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.1
, pp. 257-272
-
-
Huang, X.1
Zhang, L.2
-
4
-
-
35348881574
-
Kernel eigenspace separation transform for Subspace anomaly detection in hyperspectral imagery
-
Oct.
-
H. Goldberg, H. Kwon, and N. M. Nasrabadi, "Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., Vol. 4, no. 4, pp. 581-585, Oct. 2007.
-
(2007)
IEEE Geosci. Remote Sens. Lett.
, vol.4
, Issue.4
, pp. 581-585
-
-
Goldberg, H.1
Kwon, H.2
Nasrabadi, N.M.3
-
5
-
-
85046293389
-
Hyperspectral CNN for image classification & band selection, with application to face recognition
-
ESAT, Leuven, Belgium, Tech. Rep. KUL/ESAT/PSI/1604, Dec.
-
S. Vivek, D. Ali, T. Tinne, and V. G. Luc, "Hyperspectral CNN for image classification & band selection, with application to face recognition," KU Leuven, ESAT, Leuven, Belgium, Tech. Rep. KUL/ESAT/PSI/1604, Dec. 2016.
-
(2016)
KU Leuven
-
-
Vivek, S.1
Ali, D.2
Tinne, T.3
Luc, V.G.4
-
7
-
-
85032751896
-
Hyperspectral image data analysis
-
Jan.
-
D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., Vol. 19, no. 1, pp. 17-28, Jan. 2002.
-
(2002)
IEEE Signal Process. Mag.
, vol.19
, Issue.1
, pp. 17-28
-
-
Landgrebe, D.1
-
8
-
-
85020744062
-
Hyperspectral image classification based on multiscale spatial information fusion
-
Sep.
-
H. Li, Y. Song, and C. L. Philip Chen, "Hyperspectral image classification based on multiscale spatial information fusion," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 9, pp. 5302-5312, Sep. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.9
, pp. 5302-5312
-
-
Li, H.1
Song, Y.2
Philip Chen, C.L.3
-
9
-
-
85021807370
-
Dimensionality reduction by spatial-spectral preservation in selected bands
-
Sep.
-
X. Zheng, Y. Yuan, and X. Lu, "Dimensionality reduction by spatial-spectral preservation in selected bands," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 9, pp. 5185-5197, Sep. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.9
, pp. 5185-5197
-
-
Zheng, X.1
Yuan, Y.2
Lu, X.3
-
10
-
-
85046059619
-
Using CNN to classify hyperspectral data based on spatial-spectral information
-
Kaohsiung, Taiwan, Nov.
-
L. Lin and X. Song, "Using CNN to classify hyperspectral data based on spatial-spectral information," in Proc. Int. Conf. Intell. Inf. Hiding Multimedia Signal Process., Kaohsiung, Taiwan, Nov. 2016, pp. 61-68.
-
(2016)
Proc. Int. Conf. Intell. Inf. Hiding Multimedia Signal Process.
, pp. 61-68
-
-
Lin, L.1
Song, X.2
-
11
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
Mar.
-
M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, Vol. 101, no. 3, pp. 652-675, Mar. 2013.
-
(2013)
Proc. IEEE
, vol.101
, Issue.3
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.A.3
Chanussot, J.4
Tilton, J.C.5
-
12
-
-
84883824357
-
Generalized composite kernel framework for hyperspectral image classification
-
Sep.
-
J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias, and J. A. Benediktsson, "Generalized composite kernel framework for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., Vol. 51, no. 9, pp. 4816-4829, Sep. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.9
, pp. 4816-4829
-
-
Li, J.1
Marpu, P.R.2
Plaza, A.3
Bioucas-Dias, J.M.4
Benediktsson, J.A.5
-
13
-
-
44049098082
-
Nearest neighbor classification of remote sensing images with the maximal margin principle
-
Jun.
-
E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle," IEEE Trans. Geosci. Remote Sens., Vol. 46, no. 6, pp. 1804-1811, Jun. 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.6
, pp. 1804-1811
-
-
Blanzieri, E.1
Melgani, F.2
-
14
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector Machines
-
Aug.
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., Vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
15
-
-
84890123096
-
Spatial-spectral kernel sparse representation for hyperspectral image classification
-
Dec.
-
J. Liu, Z. Wu, Z. Wei, L. Xiao, and L. Sun, "Spatial-spectral kernel sparse representation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 6, no. 6, pp. 2462-2471, Dec. 2013.
-
(2013)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.6
, Issue.6
, pp. 2462-2471
-
-
Liu, J.1
Wu, Z.2
Wei, Z.3
Xiao, L.4
Sun, L.5
-
16
-
-
84951009176
-
A survey on representation-based classification and detection in hyperspectral remote sensing imagery
-
Nov.
-
W. Li and Q. Du, "A survey on representation-based classification and detection in hyperspectral remote sensing imagery," Pattern Recognit. Lett., Vol. 83, no. 2, pp. 115-123, Nov. 2015.
-
(2015)
Pattern Recognit. Lett.
, vol.83
, Issue.2
, pp. 115-123
-
-
Li, W.1
Du, Q.2
-
17
-
-
84925296587
-
Local binary patterns and extreme learning Machine for hyperspectral imagery classification
-
Jul.
-
W. Li, C. Chen, H. Su, and Q. Du, "Local binary patterns and extreme learning machine for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., Vol. 53, no. 7, pp. 3681-3693, Jul. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.7
, pp. 3681-3693
-
-
Li, W.1
Chen, C.2
Su, H.3
Du, Q.4
-
18
-
-
85027937532
-
Active learning with Gaussian process classifier for hyperspectral image classification
-
Apr.
-
S. Sun, P. Zhong, H. Xiao, and R. Wang, "Active learning with Gaussian process classifier for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., Vol. 53, no. 4, pp. 1746-1760, Apr. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.4
, pp. 1746-1760
-
-
Sun, S.1
Zhong, P.2
Xiao, H.3
Wang, R.4
-
19
-
-
79957643015
-
Robust hyperspectral classification using relevance vector Machine
-
Jun.
-
F. A. Mianji and Y. Zhang, "Robust hyperspectral classification using relevance vector machine," IEEE Trans. Geosci. Remote Sens., Vol. 49, no. 6, pp. 2100-2112, Jun. 2011.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.6
, pp. 2100-2112
-
-
Mianji, F.A.1
Zhang, Y.2
-
20
-
-
85046260437
-
Supervised deep feature extraction for hyperspectral image classification
-
to be published
-
B. Liu, X. Yu, P. Zhang, A. Yu, Q. Fu, and X. Wei, "Supervised deep feature extraction for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., to be published.
-
IEEE Trans. Geosci. Remote Sens.
-
-
Liu, B.1
Yu, X.2
Zhang, P.3
Yu, A.4
Fu, Q.5
Wei, X.6
-
21
-
-
77958017904
-
SVM-and MRF-based method for accurate classification of hyperspectral images
-
Oct.
-
Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., Vol. 7, no. 4, pp. 736-740, Oct. 2010.
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.4
, pp. 736-740
-
-
Tarabalka, Y.1
Fauvel, M.2
Chanussot, J.3
Benediktsson, J.A.4
-
22
-
-
80052087931
-
Spectral-spatial hyperspectral image segmentation using Subspace multinomial logistic regression and Markov random fields
-
Mar.
-
J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Geosci. Remote Sens. Lett., Vol. 50, no. 3, pp. 809-823, Mar. 2012.
-
(2012)
IEEE Geosci. Remote Sens. Lett.
, vol.50
, Issue.3
, pp. 809-823
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
23
-
-
84908032942
-
Saliency-guided unsupervised feature learning for scene classification
-
Apr.
-
F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., Vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.4
, pp. 2175-2184
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
24
-
-
84952685590
-
Deep learning-based man-made object detection from hyperspectral data
-
Las Vegas, NV, USA, Dec.
-
K. Makantasis, K. Karantzalos, A. Doulamis, and M. Loupos, "Deep learning-based man-made object detection from hyperspectral data," in Proc. Int. Symp. Vis. Comput., Las Vegas, NV, USA, Dec. 2016, pp. 717-727.
-
(2016)
Proc. Int. Symp. Vis. Comput.
, pp. 717-727
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Loupos, M.4
-
25
-
-
85019010234
-
Deep recurrent neural networks for hyperspectral image classification
-
Jul.
-
L. Mou, P. Ghamisi, and X. X. Zhu, "Deep recurrent neural networks for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 7, pp. 3639-3655, Jul. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.7
, pp. 3639-3655
-
-
Mou, L.1
Ghamisi, P.2
Zhu, X.X.3
-
26
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
Mar.
-
F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., Vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
27
-
-
85013301566
-
Training deep convolutional neural networks for land-cover classification of high-resolution imagery
-
Apr.
-
G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis, "Training deep convolutional neural networks for land-cover classification of high-resolution imagery," IEEE Geosci. Remote Sens. Lett., Vol. 14, no. 4, pp. 549-553, Apr. 2017.
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.4
, pp. 549-553
-
-
Scott, G.J.1
England, M.R.2
Starms, W.A.3
Marcum, R.A.4
Davis, C.H.5
-
28
-
-
84947127828
-
Deep learning based feature selection for remote sensing scene classification
-
Nov.
-
Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett., Vol. 12, no. 11, pp. 2321-2325, Nov. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.11
, pp. 2321-2325
-
-
Zou, Q.1
Ni, L.2
Zhang, T.3
Wang, Q.4
-
30
-
-
84976384382
-
Deep learning for remote sensing data: A technical tutorial on the state of the art
-
Jun.
-
L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., Vol. 4, no. 2, pp. 22-40, Jun. 2016.
-
(2016)
IEEE Geosci. Remote Sens. Mag.
, vol.4
, Issue.2
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
31
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Jun.
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
32
-
-
84959139728
-
Spectral-spatial classification of hyper-spectral image based on deep auto-encoder
-
Sep.
-
X. Ma, H. Wang, and J. Geng, "Spectral-spatial classification of hyper-spectral image based on deep auto-encoder," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 9, no. 9, pp. 4073-4085, Sep. 2016.
-
(2016)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.9
, Issue.9
, pp. 4073-4085
-
-
Ma, X.1
Wang, H.2
Geng, J.3
-
33
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
Jan.
-
W. Hu, Y. Huang, W. Li, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sensors, Vol. 2015, Jan. 2015, Art. no. 258619.
-
(2015)
J. Sensors
, vol.2015
-
-
Hu, W.1
Huang, Y.2
Li, W.3
Zhang, F.4
Li, H.5
-
34
-
-
84962910954
-
Hyperspectral image classification with convolutional neural networks
-
Brisbane, QLD, Australia, Oct.
-
V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, and R. Van de Walle, "Hyperspectral image classification with convolutional neural networks," in Proc. ACM Int. Conf. Multimedia (ACMMM), Brisbane, QLD, Australia, Oct. 2015, pp. 26-30.
-
(2015)
Proc. ACM Int. Conf. Multimedia (ACMMM)
, pp. 26-30
-
-
Slavkovikj, V.1
Verstockt, S.2
De Neve, W.3
Van Hoecke, S.4
Van De Walle, R.5
-
35
-
-
84962569483
-
Deep supervised learning for hyperspectral data classification through con-volutional neural networks
-
Milan, Italy, Jul.
-
K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through con-volutional neural networks," in Proc. IGARSS, Milan, Italy, Jul. 2015, pp. 4959-4962.
-
(2015)
Proc. IGARSS
, pp. 4959-4962
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Doulamis, N.4
-
36
-
-
85018902434
-
Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks
-
Aug.
-
S. Mei, J. Ji, J. Hou, X. Li, and Q. Du, "Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 8, pp. 4520-4533, Aug. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.8
, pp. 4520-4533
-
-
Mei, S.1
Ji, J.2
Hou, J.3
Li, X.4
Du, Q.5
-
37
-
-
84930423638
-
Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
-
May
-
J. Yue, W. Zhao, S. Mao, and H. Liu, "Spectral-spatial classification of hyperspectral images using deep convolutional neural networks," Remote Sens. Lett., Vol. 6, no. 6, pp. 468-477, May 2015.
-
(2015)
Remote Sens. Lett.
, vol.6
, Issue.6
, pp. 468-477
-
-
Yue, J.1
Zhao, W.2
Mao, S.3
Liu, H.4
-
38
-
-
84995529466
-
Hyperspectral image classification using deep pixel-pair features
-
Feb.
-
W. Li, G. Wu, F. Zhang, and Q. Du, "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens., Vol. 55, no. 2, pp. 844-853, Feb. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 844-853
-
-
Li, W.1
Wu, G.2
Zhang, F.3
Du, Q.4
-
39
-
-
85023605626
-
Going deeper with contextual CNN for hyper-spectral image classification
-
Oct.
-
H. Lee and H. Kwon, "Going deeper with contextual CNN for hyper-spectral image classification," IEEE Trans. Image Process., Vol. 26, no. 10, pp. 4843-4855, Oct. 2017.
-
(2017)
IEEE Trans. Image Process.
, vol.26
, Issue.10
, pp. 4843-4855
-
-
Lee, H.1
Kwon, H.2
-
40
-
-
85027942618
-
Spectral-spatial classification of hyper-spectral data based on deep belief network
-
Jun.
-
Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyper-spectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.1
Zhao, X.2
Jia, X.3
-
41
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Sep.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 37, no. 9, pp. 1904-1916, Sep. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.9
, pp. 1904-1916
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
42
-
-
85005950673
-
Human parsing with contextualized convolutional neural network
-
Jan.
-
X. Liang et al., "Human parsing with contextualized convolutional neural network," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, no. 1, pp. 115-127, Jan. 2016.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.39
, Issue.1
, pp. 115-127
-
-
Liang, X.1
-
44
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, NV, USA, Jun
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
46
-
-
77956509090
-
Rectified linear units improve restricted boltzmann Machines
-
Haifa, Israel, Jun
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 21-24.
-
(2010)
Proc. Int. Conf. Mach. Learn.
, pp. 21-24
-
-
Nair, V.1
Hinton, G.E.2
-
47
-
-
84890436374
-
Nearest regularized Subspace for hyperspectral classification
-
Jan.
-
W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, "Nearest regularized subspace for hyperspectral classification," IEEE Trans. Geosci. Remote Sens., Vol. 52, no. 1, pp. 477-489, Jan. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.1
, pp. 477-489
-
-
Li, W.1
Tramel, E.W.2
Prasad, S.3
Fowler, J.E.4
-
48
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Sardinia, Italy, May
-
X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. AISTATS, Sardinia, Italy, May 2010, pp. 249-256.
-
(2010)
Proc. AISTATS
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
49
-
-
85041850472
-
Deep residual networks for hyperspectral image classification
-
Fort Worth, TX, USA, Jul.
-
Z. Zhong, J. Li, L. Ma, H. Jiang, and H. Zhao, "Deep residual networks for hyperspectral image classification," in Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), Fort Worth, TX, USA, Jul. 2017, pp. 23-28.
-
(2017)
Proc. Int. Geosci. Remote Sens. Symp. (IGARSS)
, pp. 23-28
-
-
Zhong, Z.1
Li, J.2
Ma, L.3
Jiang, H.4
Zhao, H.5
-
50
-
-
77953871614
-
Sensitivity of support vector Machines to random feature selection in classification of hyperspectral data
-
Jul.
-
B. Waske, S. van der Linden, J. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., Vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.7
, pp. 2880-2889
-
-
Waske, B.1
Van Der Linden, S.2
Benediktsson, J.3
Rabe, A.4
Hostert, P.5
|