메뉴 건너뛰기




Volumn 10, Issue 2, 2018, Pages

Early-season stand count determination in Corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques

Author keywords

Corn; Farm management; Precision agriculture; Supervised learning; Unmanned aerial system

Indexed keywords

AGRICULTURE; ANTENNAS; DATA ACQUISITION; DECISION TREES; OBJECT DETECTION; PRECISION AGRICULTURE; SUPERVISED LEARNING; TREES (MATHEMATICS); UNMANNED AERIAL VEHICLES (UAV);

EID: 85042521589     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10020343     Document Type: Article
Times cited : (62)

References (58)
  • 1
    • 4544334348 scopus 로고    scopus 로고
    • Corn Response to Within Row Plant Spacing Variation
    • Lauer, J.G.; Rankin, M. Corn Response to Within Row Plant Spacing Variation. Agron. J. 2004, 96, 1464-1468
    • (2004) Agron. J , vol.96 , pp. 1464-1468
    • Lauer, J.G.1    Rankin, M.2
  • 2
    • 79151475900 scopus 로고    scopus 로고
    • A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages
    • Ciampitti, I.A.; Vyn, T.J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crop. Res. 2011, 121, 2-18
    • (2011) Field Crop. Res , vol.121 , pp. 2-18
    • Ciampitti, I.A.1    Vyn, T.J.2
  • 3
    • 9944260395 scopus 로고    scopus 로고
    • Impact of planter type, planting speed, and tillage on stand uniformity and yield of corn
    • Wiedong, L.; Tollenaar, M.; Stewart, G.; Deen, W. Impact of planter type, planting speed, and tillage on stand uniformity and yield of corn. Agron. J. 2004, 96, 1668-1672
    • (2004) Agron. J , vol.96 , pp. 1668-1672
    • Wiedong, L.1    Tollenaar, M.2    Stewart, G.3    Deen, W.4
  • 4
    • 0742325628 scopus 로고    scopus 로고
    • Publication AGRY-91-01; Purdue University: West Lafayette, IN, USA
    • Nielsen, R.L. Stand Establishment Variability in Corn; Publication AGRY-91-01; Purdue University: West Lafayette, IN, USA, 2001
    • (2001) Stand Establishment Variability in Corn
    • Nielsen, R.L.1
  • 5
    • 0001170296 scopus 로고
    • Response of corn to uneven emergence
    • Nafziger, E.D.; Carter, P.R.; Graham, E.E. Response of corn to uneven emergence. Crop Sci. 1991, 31, 811-815
    • (1991) Crop Sci , vol.31 , pp. 811-815
    • Nafziger, E.D.1    Carter, P.R.2    Graham, E.E.3
  • 6
    • 85042523539 scopus 로고    scopus 로고
    • Extension and Outreach. IC-492:7; Iowa State University: Ames, IA, USA
    • De Bruin, J.; Pedersen, P. Early Season Scouting; Extension and Outreach. IC-492:7; Iowa State University: Ames, IA, USA, 2004; pp. 33-34
    • (2004) Early Season Scouting , pp. 33-34
    • De Bruin, J.1    Pedersen, P.2
  • 8
    • 84855865864 scopus 로고    scopus 로고
    • Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor
    • Nakarmi, A.D.; Tang, L. Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor. Comput. Electron. Agric. 2012, 82, 23-31
    • (2012) Comput. Electron. Agric , vol.82 , pp. 23-31
    • Nakarmi, A.D.1    Tang, L.2
  • 9
    • 84904463838 scopus 로고    scopus 로고
    • Within-row spacing sensing of maize plants using 3D computer vision
    • Nakarmi, A.D.; Tang, L. Within-row spacing sensing of maize plants using 3D computer vision. Biosyst. Eng. 2014, 125, 54-64
    • (2014) Biosyst. Eng , vol.125 , pp. 54-64
    • Nakarmi, A.D.1    Tang, L.2
  • 10
    • 84884163050 scopus 로고    scopus 로고
    • Automatic corn plant location and spacing measurement using laser line-scan technique
    • Shi, Y.; Wang, N.; Taylor, R.K. Automatic corn plant location and spacing measurement using laser line-scan technique. Precis. Agric. 2013, 14, 478-494
    • (2013) Precis. Agric , vol.14 , pp. 478-494
    • Shi, Y.1    Wang, N.2    Taylor, R.K.3
  • 11
    • 17744368050 scopus 로고    scopus 로고
    • Size and Shape Analysis of Corn Plant Canopies for Plant Population and Spacing Sensing
    • Shrestha, D.S.; Steward, B.L. Size and Shape Analysis of Corn Plant Canopies for Plant Population and Spacing Sensing. Appl. Eng. Agric. 2005, 21, 295-303
    • (2005) Appl. Eng. Agric , vol.21 , pp. 295-303
    • Shrestha, D.S.1    Steward, B.L.2
  • 12
    • 41749119154 scopus 로고    scopus 로고
    • Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density
    • Thorp, K.R.; Steward, B.L.; Kaleita, A.L.; Batchelor, W.D. Using aerial hyperspectral remote sensing imagery to estimate corn plant stand density. Trans. ASABE 2008, 51, 311-320
    • (2008) Trans. ASABE , vol.51 , pp. 311-320
    • Thorp, K.R.1    Steward, B.L.2    Kaleita, A.L.3    Batchelor, W.D.4
  • 13
    • 2342507759 scopus 로고    scopus 로고
    • Narrow-band and derivative-based vegetation indices for hyperspectral data
    • Thorp, K.R.; Tian, L.; Yao, H.; Tang, L. Narrow-band and derivative-based vegetation indices for hyperspectral data. Trans. ASAE 2004, 47, 291-299
    • (2004) Trans. ASAE , vol.47 , pp. 291-299
    • Thorp, K.R.1    Tian, L.2    Yao, H.3    Tang, L.4
  • 14
    • 84926633657 scopus 로고    scopus 로고
    • An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops
    • Torres-Sanchez, J.; Lopez-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43-52
    • (2015) Comput. Electron. Agric , vol.114 , pp. 43-52
    • Torres-Sanchez, J.1    Lopez-Granados, F.2    Peña, J.M.3
  • 15
    • 84912144701 scopus 로고    scopus 로고
    • UAV flight experiments applied to the remote sensing of vegetated areas
    • Salami, E.; Barrado, C.; Pastor, E. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens. 2014, 6, 11051-11081
    • (2014) Remote Sens , vol.6 , pp. 11051-11081
    • Salami, E.1    Barrado, C.2    Pastor, E.3
  • 16
    • 84928668178 scopus 로고    scopus 로고
    • Quantifying efficacy and limits of unmanned aerial vehicle UAV technology for weed seedling detection as affected by sensor resolution
    • Peña, J.M.; Torres-Sanchez, J.; Serrano-Perez, A.; de Castro, A.I.; Lopez-Granados, F. Quantifying efficacy and limits of unmanned aerial vehicle UAV technology for weed seedling detection as affected by sensor resolution. Sensors 2015, 15, 5609-5626
    • (2015) Sensors , vol.15 , pp. 5609-5626
    • Peña, J.M.1    Torres-Sanchez, J.2    Serrano-Perez, A.3    de Castro, A.I.4    Lopez-Granados, F.5
  • 18
    • 78650974078 scopus 로고    scopus 로고
    • Weed detection for site-specific weed management: Mapping and real-time approaches
    • López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1-11
    • (2011) Weed Res , vol.51 , pp. 1-11
    • López-Granados, F.1
  • 19
    • 84896137428 scopus 로고    scopus 로고
    • Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
    • Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104-113
    • (2014) Comput. Electron. Agric , vol.103 , pp. 104-113
    • Torres-Sánchez, J.1    Peña, J.M.2    de Castro, A.I.3    López-Granados, F.4
  • 21
    • 84912137635 scopus 로고    scopus 로고
    • Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system
    • Geipel, J.; Link, J.; Claupein, W. Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens. 2014, 6, 10335-10355
    • (2014) Remote Sens , vol.6 , pp. 10335-10355
    • Geipel, J.1    Link, J.2    Claupein, W.3
  • 24
    • 84880358324 scopus 로고    scopus 로고
    • Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud
    • Mathews, A.J.; Jensen, J.L.R. Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud. Remote Sens. 2013, 5, 2164-2183
    • (2013) Remote Sens , vol.5 , pp. 2164-2183
    • Mathews, A.J.1    Jensen, J.L.R.2
  • 25
    • 85038247198 scopus 로고    scopus 로고
    • Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery
    • Yao, X.;Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304
    • (2017) Remote Sens , vol.9 , pp. 1304
    • Yao, X.1    Wang, N.2    Liu, Y.3    Cheng, T.4    Tian, Y.5    Chen, Q.6    Zhu, Y.7
  • 26
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation índices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation índices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337-352
    • (2004) Remote Sens. Environ , vol.90 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 27
  • 29
    • 85011310839 scopus 로고    scopus 로고
    • Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds
    • De Souza, C.H.W.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhaes, P.S.G. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. Int. J. Remote Sens. 2017, 38, 2218-2230
    • (2017) Int. J. Remote Sens , vol.38 , pp. 2218-2230
    • De Souza, C.H.W.1    Lamparelli, R.A.C.2    Rocha, J.V.3    Magalhaes, P.S.G.4
  • 30
    • 85022339077 scopus 로고    scopus 로고
    • Poppy Crop Height and Capsule Volume Estimation from a Single UAS Flight
    • Iqbal, F.; Lucieer, A.; Barry, K.; Wells, R. Poppy Crop Height and Capsule Volume Estimation from a Single UAS Flight. Remote Sens. 2017, 9, 647
    • (2017) Remote Sens , vol.9 , pp. 647
    • Iqbal, F.1    Lucieer, A.2    Barry, K.3    Wells, R.4
  • 32
    • 84861758703 scopus 로고    scopus 로고
    • Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content
    • Clevers, J.G.P.W.; Kooistra, L. Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 574-583
    • (2012) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.5 , pp. 574-583
    • Clevers, J.G.P.W.1    Kooistra, L.2
  • 33
    • 84877928191 scopus 로고    scopus 로고
    • Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System
    • Uto, K.; Seki, H.; Saito, G.; Kosugi, Y. Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 851-860
    • (2013) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.6 , pp. 851-860
    • Uto, K.1    Seki, H.2    Saito, G.3    Kosugi, Y.4
  • 34
    • 84962701763 scopus 로고    scopus 로고
    • Field phenotyping of water stress at tree scale by UAV-sensed imagery: New insights for thermal acquisition and calibration
    • Gomez-Candon, D.; Virlet, N.; Labbe, S.; Jolivot, A.; Regnard, J.L. Field phenotyping of water stress at tree scale by UAV-sensed imagery: New insights for thermal acquisition and calibration. Precis. Agric. 2016, 17, 786-800
    • (2016) Precis. Agric , vol.17 , pp. 786-800
    • Gomez-Candon, D.1    Virlet, N.2    Labbe, S.3    Jolivot, A.4    Regnard, J.L.5
  • 35
    • 84886723223 scopus 로고    scopus 로고
    • Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard
    • Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolas, E.; Nortes, P.A.; Alarcon, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660-678
    • (2013) Precis. Agric , vol.14 , pp. 660-678
    • Gonzalez-Dugo, V.1    Zarco-Tejada, P.2    Nicolas, E.3    Nortes, P.A.4    Alarcon, J.J.5    Intrigliolo, D.S.6    Fereres, E.7
  • 36
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
    • Berni, J.; Zarco-Tejada, P.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722-738
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 722-738
    • Berni, J.1    Zarco-Tejada, P.2    Suarez, L.3    Fereres, E.4
  • 37
    • 85020307153 scopus 로고    scopus 로고
    • Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
    • Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105-114
    • (2017) Remote Sens. Environ , vol.198 , pp. 105-114
    • Jin, X.1    Liu, S.2    Baret, F.3    Hemerlé, M.4    Comar, A.5
  • 38
    • 84878353036 scopus 로고    scopus 로고
    • Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model
    • Guo, W.; Rage, U.K.; Ninomiya, S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agric. 2013, 96, 58-66
    • (2013) Comput. Electron. Agric , vol.96 , pp. 58-66
    • Guo, W.1    Rage, U.K.2    Ninomiya, S.3
  • 40
    • 85021163000 scopus 로고    scopus 로고
    • Digital counts of maize plants by unmanned aerial vehicles (UAVs)
    • Gnädinger, F.; Schmidhalter, U. Digital counts of maize plants by unmanned aerial vehicles (UAVs). Remote Sens. 2017, 9, 544
    • (2017) Remote Sens , vol.9 , pp. 544
    • Gnädinger, F.1    Schmidhalter, U.2
  • 42
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627-1639
    • (1964) Anal. Chem , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 43
    • 84893724859 scopus 로고    scopus 로고
    • Sensor planning for a symbiotic UAV and UGV system for precision agriculture
    • Tokekar, P.; Hook, J.V.; Mulla, D.; Isler, V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Robot. 2016, 32, 5321-5326
    • (2016) IEEE Trans. Robot , vol.32 , pp. 5321-5326
    • Tokekar, P.1    Hook, J.V.2    Mulla, D.3    Isler, V.4
  • 45
    • 85042552620 scopus 로고    scopus 로고
    • Australian Farm Institute Newsletter: Surry Hills, Australia
    • Henry, M. Big Data and the Future of Farming; Australian Farm Institute Newsletter: Surry Hills, Australia, 2015; Volume 4
    • (2015) Big Data and the Future of Farming , vol.4
    • Henry, M.1
  • 49
    • 47049087271 scopus 로고    scopus 로고
    • Verification of color vegetation indices for automated crop imaging applications
    • Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282-293
    • (2008) Comput. Electron. Agric , vol.63 , pp. 282-293
    • Meyer, G.E.1    Neto, J.C.2
  • 50
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histogram
    • Otsu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62-66
    • (1979) IEEE Trans. Syst. Man Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 52
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157-1182
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 54
    • 84993900865 scopus 로고    scopus 로고
    • Study of various decision tree pruning methods with their empirical comparison in WEKA
    • Patel, N.; Upadhyay, S. Study of various decision tree pruning methods with their empirical comparison in WEKA. Int. J. Comput. Appl. 2012, 60, 20-25
    • (2012) Int. J. Comput. Appl , vol.60 , pp. 20-25
    • Patel, N.1    Upadhyay, S.2
  • 56
    • 84859216442 scopus 로고    scopus 로고
    • Generalised bottom-up pruning: A model level combination of decision trees
    • Eastwood, M.; Gabrys, B. Generalised bottom-up pruning: A model level combination of decision trees. Expert Syst. Appl. 2012, 39, 9150-9158
    • (2012) Expert Syst. Appl , vol.39 , pp. 9150-9158
    • Eastwood, M.1    Gabrys, B.2
  • 57
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
    • Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37-63
    • (2011) J. Mach. Learn. Technol , vol.2 , pp. 37-63
    • Powers, D.M.W.1
  • 58
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861-874
    • (2006) Pattern Recognit. Lett , vol.27 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.