-
1
-
-
85054324134
-
-
Lefèvre, S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Proc. Asian Conference on Computer Vision.
-
Audebert, N., Le Saux, B., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Proc. Asian Conference on Computer Vision.
-
(2016)
-
-
Audebert, N.1
Le Saux, B.2
-
2
-
-
85020187184
-
Fusion of heterogeneous data in convolutional networks for urban semantic labeling
-
IEEE
-
Audebert, N., Le Saux, B., Lefèvrey, S., Fusion of heterogeneous data in convolutional networks for urban semantic labeling. Urban Remote Sensing Event (JURSE), 2017 Joint, 2017, IEEE, 1–4.
-
(2017)
Urban Remote Sensing Event (JURSE), 2017 Joint
, pp. 1-4
-
-
Audebert, N.1
Le Saux, B.2
Lefèvrey, S.3
-
3
-
-
85026995922
-
Processing of extremely high resolution LiDAR and RGB data: outcome of the 2015 IEEE GRSS data fusion contest. Part A: 2D contest
-
Campos-Taberner, M., Romero-Soriano, A., Gatta, C., Camps-Valls, G., Lagrange, A., Saux, B.L., Beaupère, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M., Shimoni, M., Moser, G., Tuia, D., Processing of extremely high resolution LiDAR and RGB data: outcome of the 2015 IEEE GRSS data fusion contest. Part A: 2D contest. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 9 (2016), 5547–5559.
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
, vol.9
, pp. 5547-5559
-
-
Campos-Taberner, M.1
Romero-Soriano, A.2
Gatta, C.3
Camps-Valls, G.4
Lagrange, A.5
Saux, B.L.6
Beaupère, A.7
Boulch, A.8
Chan-Hon-Tong, A.9
Herbin, S.10
Randrianarivo, H.11
Ferecatu, M.12
Shimoni, M.13
Moser, G.14
Tuia, D.15
-
4
-
-
85054304559
-
-
Use Classification in Remote Sensing Images by Convolutional Neural Networks, 1–11. Available from: .
-
Castelluccio, M.P.G., Sansone, C., Verdoliva, L., 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks, 1–11. Available from: .
-
(2015)
-
-
Castelluccio, M.P.G.1
Sansone, C.2
Verdoliva, L.L.3
-
5
-
-
85027047340
-
Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
-
Cheng, G., Zhou, P., Han, J., Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Rem. Sens. 54 (2016), 7405–7415.
-
(2016)
IEEE Trans. Geosci. Rem. Sens.
, vol.54
, pp. 7405-7415
-
-
Cheng, G.1
Zhou, P.2
Han, J.3
-
6
-
-
85054341637
-
-
Group Equivariant Convolutional Networks. Available from: <>.
-
Cohen, T.S., Welling, M., 2016. Group Equivariant Convolutional Networks. Available from: < arXiv:1602.07576>.
-
(2016)
-
-
Cohen, T.S.1
Welling, M.2
-
7
-
-
77957007028
-
Morphological attribute profiles for the analysis of very high resolution images
-
Dalla Mura, M., Atli Benediktsson, J., Waske, B., Bruzzone, L., Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Rem. Sens. 48 (2010), 3747–3762.
-
(2010)
IEEE Trans. Geosci. Rem. Sens.
, vol.48
, pp. 3747-3762
-
-
Dalla Mura, M.1
Atli Benediktsson, J.2
Waske, B.3
Bruzzone, L.4
-
8
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J., Tilton, J., Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101 (2013), 652–675, 10.1109/JPROC.2012.2197589.
-
(2013)
Proc. IEEE
, vol.101
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.3
Chanussot, J.4
Tilton, J.5
-
9
-
-
85054343172
-
-
Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Technical Report. ITC, Univ. of Twente.
-
Gerke, M., 2015. Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Technical Report. ITC, Univ. of Twente.
-
(2015)
-
-
Gerke, M.1
-
10
-
-
31844432282
-
-
Online feature selection for pixel classification. In: Int. Conf. Machine Learning, Bonn, Germany.
-
Glocer, K., Eads, D., Theiler, J., 2005. Online feature selection for pixel classification. In: Int. Conf. Machine Learning, Bonn, Germany.
-
(2005)
-
-
Glocer, K.1
Eads, D.2
Theiler, J.3
-
11
-
-
85054332108
-
-
Deep Learning. URL: <> (Book in preparation for MIT Press).
-
Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. URL: < http://goodfeli.github.io/dlbook/> (Book in preparation for MIT Press).
-
(2016)
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
12
-
-
84959187135
-
-
Large-scale damage detection using satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
Gueguen, L., Hamid, R., 2015. Large-scale damage detection using satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1321–1328.
-
(2015)
, pp. 1321-1328
-
-
Gueguen, L.1
Hamid, R.2
-
13
-
-
84959236250
-
-
Hypercolumns for object segmentation and fine-grained localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
-
Hariharan, B., Arbelaez, P., Girshick, R., Malik, J., 2015. Hypercolumns for object segmentation and fine-grained localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
-
(2015)
-
-
Hariharan, B.1
Arbelaez, P.2
Girshick, R.3
Malik, J.4
-
14
-
-
0036477310
-
Comparison of GENIE and conventional supervised classifiers for multispectral image feature extraction
-
Harvey, N.R., Theiler, J., Brumby, S.P., Perkins, S., Szymanski, J.J., Bloch, J.J., Porter, R.B., Galassi, M., Young, A.C., Comparison of GENIE and conventional supervised classifiers for multispectral image feature extraction. IEEE Trans. Geosci. Rem. Sens. 40 (2002), 393–404.
-
(2002)
IEEE Trans. Geosci. Rem. Sens.
, vol.40
, pp. 393-404
-
-
Harvey, N.R.1
Theiler, J.2
Brumby, S.P.3
Perkins, S.4
Szymanski, J.J.5
Bloch, J.J.6
Porter, R.B.7
Galassi, M.8
Young, A.C.9
-
15
-
-
84965096967
-
-
Spatial transformer networks. In: Advances in Neural Information Processing Systems
-
Jaderberg, M., Simonyan, K., Zisserman, A., et al., 2015. Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025.
-
(2015)
, pp. 2017-2025
-
-
Jaderberg, M.1
Simonyan, K.2
Zisserman, A.3
-
16
-
-
84962489522
-
-
Beaupere, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M. Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks. In: Proc. IGARSS, Milan, Italy
-
Lagrange, A., Le Saux, B., Beaupere, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M., 2015. Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks. In: Proc. IGARSS, Milan, Italy, pp. 4173–4176.
-
(2015)
, pp. 4173-4176
-
-
Lagrange, A.1
Le Saux, B.2
-
17
-
-
85054336679
-
-
TI-pooling: transformation-invariant pooling for feature learning in convolutional neural networks. Available from: <>.
-
Laptev, D., Savinov, N., Buhmann, J.M., Pollefeys, M., 2016. TI-pooling: transformation-invariant pooling for feature learning in convolutional neural networks. Available from: < arXiv:1604.06318>.
-
(2016)
-
-
Laptev, D.1
Savinov, N.2
Buhmann, J.M.3
Pollefeys, M.4
-
18
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE. 86:11 (1998), 2278–2324, 10.1109/5.726791.
-
(1998)
Proc. IEEE.
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
0008847393
-
From data distributions to regularization in invariant learning
-
Leen, T.K., From data distributions to regularization in invariant learning. Neural Comp. 7 (1995), 974–981.
-
(1995)
Neural Comp.
, vol.7
, pp. 974-981
-
-
Leen, T.K.1
-
20
-
-
84859770321
-
Rotation-invariant object detection of remotely sensed images based on texton forest and hough voting
-
Lei, Z., Fang, T., Huo, H., Li, D., Rotation-invariant object detection of remotely sensed images based on texton forest and hough voting. IEEE Trans. Geosci. Rem. Sens. 50 (2012), 1206–1217.
-
(2012)
IEEE Trans. Geosci. Rem. Sens.
, vol.50
, pp. 1206-1217
-
-
Lei, Z.1
Fang, T.2
Huo, H.3
Li, D.4
-
21
-
-
84959210421
-
-
Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
-
Lenc, K., Vedaldi, A., 2015. Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 991–999.
-
(2015)
, pp. 991-999
-
-
Lenc, K.1
Vedaldi, A.2
-
22
-
-
85030239502
-
Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order CRFs
-
IEEE
-
Liu, Y., Piramanayagam, S., Monteiro, S.T., Saber, E., Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order CRFs. IEEE/CVF CVPRW Earthvision, 2017, IEEE, 1561–1570.
-
(2017)
IEEE/CVF CVPRW Earthvision
, pp. 1561-1570
-
-
Liu, Y.1
Piramanayagam, S.2
Monteiro, S.T.3
Saber, E.4
-
23
-
-
84959205572
-
-
Fully convolutional networks for semantic segmentation. In: IEEE/CVF International Conference on Computer Vision and Pattern Recognition.
-
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: IEEE/CVF International Conference on Computer Vision and Pattern Recognition.
-
(2015)
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
24
-
-
85054308232
-
-
High-resolution aerial image labeling with convolutional neural networks. Available from: <>.
-
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2016. High-resolution aerial image labeling with convolutional neural networks. Available from: < arXiv:1611.01962>.
-
(2016)
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
25
-
-
84992121956
-
Convolutional neural networks for large-scale remote-sensing image classification
-
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Rem. Sens. 55 (2017), 645–657.
-
(2017)
IEEE Trans. Geosci. Rem. Sens.
, vol.55
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
26
-
-
85027923694
-
Efficient framework for palm tree detection in UAV images
-
Malek, S., Bazi, Y., Alajlan, N., AlHichri, H., Melgani, F., Efficient framework for palm tree detection in UAV images. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 7 (2014), 4692–4703.
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
, vol.7
, pp. 4692-4703
-
-
Malek, S.1
Bazi, Y.2
Alajlan, N.3
AlHichri, H.4
Melgani, F.5
-
27
-
-
85054315707
-
-
Rotation equivariant vector field networks. Available from: <>.
-
Marcos, D., Volpi, M., Komodakis, N., Tuia, D., 2016. Rotation equivariant vector field networks. Available from: < arXiv:1612.09346>.
-
(2016)
-
-
Marcos, D.1
Volpi, M.2
Komodakis, N.3
Tuia, D.4
-
28
-
-
85019850780
-
Semantic segmentation of aerial images with an ensemble of CNSS
-
Marmanis, D., Wegner, J.D., Galliani, S., Schindler, K., Datcu, M., Stilla, U., Semantic segmentation of aerial images with an ensemble of CNSS. ISPRS Ann. Photogram. Rem. Sens. Spatial Inform. Sci. 3 (2016), 473–480.
-
(2016)
ISPRS Ann. Photogram. Rem. Sens. Spatial Inform. Sci.
, vol.3
, pp. 473-480
-
-
Marmanis, D.1
Wegner, J.D.2
Galliani, S.3
Schindler, K.4
Datcu, M.5
Stilla, U.6
-
29
-
-
84947648698
-
Land-cover mapping by Markov modeling of spatial-contextual information
-
Moser, G., Serpico, S.B., Benediktsson, J.A., Land-cover mapping by Markov modeling of spatial-contextual information. Proc. IEEE 101 (2013), 631–651.
-
(2013)
Proc. IEEE
, vol.101
, pp. 631-651
-
-
Moser, G.1
Serpico, S.B.2
Benediktsson, J.A.3
-
30
-
-
84940417790
-
-
dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: IEEE/CVF Computer Vision and Pattern Recognition Workshops, Earthvision.
-
Penatti, O., Nogueira, K., dos Santos, J.A., 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: IEEE/CVF Computer Vision and Pattern Recognition Workshops, Earthvision.
-
(2015)
-
-
Penatti, O.1
Nogueira, K.2
-
31
-
-
84977853388
-
Supervised classification of very high resolution optical images using wavelet-based textural features
-
Regniers, O., Bombrun, L., Lafon, V., Germain, C., Supervised classification of very high resolution optical images using wavelet-based textural features. IEEE Trans. Geosci. Rem. Sens. 54 (2016), 3722–3735.
-
(2016)
IEEE Trans. Geosci. Rem. Sens.
, vol.54
, pp. 3722-3735
-
-
Regniers, O.1
Bombrun, L.2
Lafon, V.3
Germain, C.4
-
32
-
-
85054303005
-
-
Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Available from: <>.
-
Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Available from: < arXiv:1606.02585>.
-
(2016)
-
-
Sherrah, J.1
-
33
-
-
84929495655
-
Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions
-
Tuia, D., Courty, N., Flamary, R., Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J. Int. Soc. Photo. Rem. Sens. 105 (2015), 272–285.
-
(2015)
ISPRS J. Int. Soc. Photo. Rem. Sens.
, vol.105
, pp. 272-285
-
-
Tuia, D.1
Courty, N.2
Flamary, R.3
-
34
-
-
84940382560
-
-
Semantic segmentation of urban scenes by learning local class interactions. In: IEEE/CVF CVPRW Earthvision.
-
Volpi, M., Ferrari, V., 2015. Semantic segmentation of urban scenes by learning local class interactions. In: IEEE/CVF CVPRW Earthvision.
-
(2015)
-
-
Volpi, M.1
Ferrari, V.2
-
35
-
-
84994217941
-
Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
-
Volpi, M., Tuia, D., Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 55 (2017), 881–893.
-
(2017)
IEEE Trans. Geosci. Rem. Sens.
, vol.55
, pp. 881-893
-
-
Volpi, M.1
Tuia, D.2
-
36
-
-
85054292944
-
-
Harmonic Networks: Deep Translation and Rotation Equivariance. Available from: <>.
-
Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J., 2016. Harmonic Networks: Deep Translation and Rotation Equivariance. Available from: < arXiv:1612.04642>.
-
(2016)
-
-
Worrall, D.E.1
Garbin, S.J.2
Turmukhambetov, D.3
Brostow, G.J.4
-
37
-
-
85054322295
-
-
Oriented Response Networks. Available from: <>.
-
Zhou, Y., Ye, Q., Qiu, Q., Jiao, J., 2017. Oriented Response Networks. Available from: < arXiv:1701.01833>.
-
(2017)
-
-
Zhou, Y.1
Ye, Q.2
Qiu, Q.3
Jiao, J.4
|