메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 96-107

Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models

Author keywords

Deep learning; Rotation invariance; Semantic labeling; Sub decimeter resolution

Indexed keywords

CONVOLUTION; DEEP LEARNING; ENCODING (SYMBOLS); IMAGE SEGMENTATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; REMOTE SENSING; SEMANTICS;

EID: 85042151311     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2018.01.021     Document Type: Article
Times cited : (237)

References (37)
  • 1
    • 85054324134 scopus 로고    scopus 로고
    • Lefèvre, S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Proc. Asian Conference on Computer Vision.
    • Audebert, N., Le Saux, B., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Proc. Asian Conference on Computer Vision.
    • (2016)
    • Audebert, N.1    Le Saux, B.2
  • 4
    • 85054304559 scopus 로고    scopus 로고
    • Use Classification in Remote Sensing Images by Convolutional Neural Networks, 1–11. Available from: .
    • Castelluccio, M.P.G., Sansone, C., Verdoliva, L., 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks, 1–11. Available from: .
    • (2015)
    • Castelluccio, M.P.G.1    Sansone, C.2    Verdoliva, L.L.3
  • 5
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Cheng, G., Zhou, P., Han, J., Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Rem. Sens. 54 (2016), 7405–7415.
    • (2016) IEEE Trans. Geosci. Rem. Sens. , vol.54 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 6
    • 85054341637 scopus 로고    scopus 로고
    • Group Equivariant Convolutional Networks. Available from: <>.
    • Cohen, T.S., Welling, M., 2016. Group Equivariant Convolutional Networks. Available from: < arXiv:1602.07576>.
    • (2016)
    • Cohen, T.S.1    Welling, M.2
  • 8
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J., Tilton, J., Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101 (2013), 652–675, 10.1109/JPROC.2012.2197589.
    • (2013) Proc. IEEE , vol.101 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.3    Chanussot, J.4    Tilton, J.5
  • 9
    • 85054343172 scopus 로고    scopus 로고
    • Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Technical Report. ITC, Univ. of Twente.
    • Gerke, M., 2015. Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Technical Report. ITC, Univ. of Twente.
    • (2015)
    • Gerke, M.1
  • 10
    • 31844432282 scopus 로고    scopus 로고
    • Online feature selection for pixel classification. In: Int. Conf. Machine Learning, Bonn, Germany.
    • Glocer, K., Eads, D., Theiler, J., 2005. Online feature selection for pixel classification. In: Int. Conf. Machine Learning, Bonn, Germany.
    • (2005)
    • Glocer, K.1    Eads, D.2    Theiler, J.3
  • 11
    • 85054332108 scopus 로고    scopus 로고
    • Deep Learning. URL: <> (Book in preparation for MIT Press).
    • Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. URL: < http://goodfeli.github.io/dlbook/> (Book in preparation for MIT Press).
    • (2016)
    • Goodfellow, I.1    Bengio, Y.2    Courville, A.3
  • 12
    • 84959187135 scopus 로고    scopus 로고
    • Large-scale damage detection using satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • Gueguen, L., Hamid, R., 2015. Large-scale damage detection using satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1321–1328.
    • (2015) , pp. 1321-1328
    • Gueguen, L.1    Hamid, R.2
  • 13
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
    • Hariharan, B., Arbelaez, P., Girshick, R., Malik, J., 2015. Hypercolumns for object segmentation and fine-grained localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
    • (2015)
    • Hariharan, B.1    Arbelaez, P.2    Girshick, R.3    Malik, J.4
  • 15
    • 84965096967 scopus 로고    scopus 로고
    • Spatial transformer networks. In: Advances in Neural Information Processing Systems
    • Jaderberg, M., Simonyan, K., Zisserman, A., et al., 2015. Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025.
    • (2015) , pp. 2017-2025
    • Jaderberg, M.1    Simonyan, K.2    Zisserman, A.3
  • 16
    • 84962489522 scopus 로고    scopus 로고
    • Beaupere, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M. Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks. In: Proc. IGARSS, Milan, Italy
    • Lagrange, A., Le Saux, B., Beaupere, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M., 2015. Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks. In: Proc. IGARSS, Milan, Italy, pp. 4173–4176.
    • (2015) , pp. 4173-4176
    • Lagrange, A.1    Le Saux, B.2
  • 17
    • 85054336679 scopus 로고    scopus 로고
    • TI-pooling: transformation-invariant pooling for feature learning in convolutional neural networks. Available from: <>.
    • Laptev, D., Savinov, N., Buhmann, J.M., Pollefeys, M., 2016. TI-pooling: transformation-invariant pooling for feature learning in convolutional neural networks. Available from: < arXiv:1604.06318>.
    • (2016)
    • Laptev, D.1    Savinov, N.2    Buhmann, J.M.3    Pollefeys, M.4
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE. 86:11 (1998), 2278–2324, 10.1109/5.726791.
    • (1998) Proc. IEEE. , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 0008847393 scopus 로고
    • From data distributions to regularization in invariant learning
    • Leen, T.K., From data distributions to regularization in invariant learning. Neural Comp. 7 (1995), 974–981.
    • (1995) Neural Comp. , vol.7 , pp. 974-981
    • Leen, T.K.1
  • 20
    • 84859770321 scopus 로고    scopus 로고
    • Rotation-invariant object detection of remotely sensed images based on texton forest and hough voting
    • Lei, Z., Fang, T., Huo, H., Li, D., Rotation-invariant object detection of remotely sensed images based on texton forest and hough voting. IEEE Trans. Geosci. Rem. Sens. 50 (2012), 1206–1217.
    • (2012) IEEE Trans. Geosci. Rem. Sens. , vol.50 , pp. 1206-1217
    • Lei, Z.1    Fang, T.2    Huo, H.3    Li, D.4
  • 21
    • 84959210421 scopus 로고    scopus 로고
    • Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
    • Lenc, K., Vedaldi, A., 2015. Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 991–999.
    • (2015) , pp. 991-999
    • Lenc, K.1    Vedaldi, A.2
  • 22
    • 85030239502 scopus 로고    scopus 로고
    • Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order CRFs
    • IEEE
    • Liu, Y., Piramanayagam, S., Monteiro, S.T., Saber, E., Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order CRFs. IEEE/CVF CVPRW Earthvision, 2017, IEEE, 1561–1570.
    • (2017) IEEE/CVF CVPRW Earthvision , pp. 1561-1570
    • Liu, Y.1    Piramanayagam, S.2    Monteiro, S.T.3    Saber, E.4
  • 23
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation. In: IEEE/CVF International Conference on Computer Vision and Pattern Recognition.
    • Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: IEEE/CVF International Conference on Computer Vision and Pattern Recognition.
    • (2015)
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 24
    • 85054308232 scopus 로고    scopus 로고
    • High-resolution aerial image labeling with convolutional neural networks. Available from: <>.
    • Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2016. High-resolution aerial image labeling with convolutional neural networks. Available from: < arXiv:1611.01962>.
    • (2016)
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 25
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional neural networks for large-scale remote-sensing image classification
    • Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Rem. Sens. 55 (2017), 645–657.
    • (2017) IEEE Trans. Geosci. Rem. Sens. , vol.55 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 27
    • 85054315707 scopus 로고    scopus 로고
    • Rotation equivariant vector field networks. Available from: <>.
    • Marcos, D., Volpi, M., Komodakis, N., Tuia, D., 2016. Rotation equivariant vector field networks. Available from: < arXiv:1612.09346>.
    • (2016)
    • Marcos, D.1    Volpi, M.2    Komodakis, N.3    Tuia, D.4
  • 29
    • 84947648698 scopus 로고    scopus 로고
    • Land-cover mapping by Markov modeling of spatial-contextual information
    • Moser, G., Serpico, S.B., Benediktsson, J.A., Land-cover mapping by Markov modeling of spatial-contextual information. Proc. IEEE 101 (2013), 631–651.
    • (2013) Proc. IEEE , vol.101 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 30
    • 84940417790 scopus 로고    scopus 로고
    • dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: IEEE/CVF Computer Vision and Pattern Recognition Workshops, Earthvision.
    • Penatti, O., Nogueira, K., dos Santos, J.A., 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: IEEE/CVF Computer Vision and Pattern Recognition Workshops, Earthvision.
    • (2015)
    • Penatti, O.1    Nogueira, K.2
  • 31
    • 84977853388 scopus 로고    scopus 로고
    • Supervised classification of very high resolution optical images using wavelet-based textural features
    • Regniers, O., Bombrun, L., Lafon, V., Germain, C., Supervised classification of very high resolution optical images using wavelet-based textural features. IEEE Trans. Geosci. Rem. Sens. 54 (2016), 3722–3735.
    • (2016) IEEE Trans. Geosci. Rem. Sens. , vol.54 , pp. 3722-3735
    • Regniers, O.1    Bombrun, L.2    Lafon, V.3    Germain, C.4
  • 32
    • 85054303005 scopus 로고    scopus 로고
    • Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Available from: <>.
    • Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Available from: < arXiv:1606.02585>.
    • (2016)
    • Sherrah, J.1
  • 33
    • 84929495655 scopus 로고    scopus 로고
    • Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions
    • Tuia, D., Courty, N., Flamary, R., Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J. Int. Soc. Photo. Rem. Sens. 105 (2015), 272–285.
    • (2015) ISPRS J. Int. Soc. Photo. Rem. Sens. , vol.105 , pp. 272-285
    • Tuia, D.1    Courty, N.2    Flamary, R.3
  • 34
    • 84940382560 scopus 로고    scopus 로고
    • Semantic segmentation of urban scenes by learning local class interactions. In: IEEE/CVF CVPRW Earthvision.
    • Volpi, M., Ferrari, V., 2015. Semantic segmentation of urban scenes by learning local class interactions. In: IEEE/CVF CVPRW Earthvision.
    • (2015)
    • Volpi, M.1    Ferrari, V.2
  • 35
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
    • Volpi, M., Tuia, D., Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 55 (2017), 881–893.
    • (2017) IEEE Trans. Geosci. Rem. Sens. , vol.55 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 36
    • 85054292944 scopus 로고    scopus 로고
    • Harmonic Networks: Deep Translation and Rotation Equivariance. Available from: <>.
    • Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J., 2016. Harmonic Networks: Deep Translation and Rotation Equivariance. Available from: < arXiv:1612.04642>.
    • (2016)
    • Worrall, D.E.1    Garbin, S.J.2    Turmukhambetov, D.3    Brostow, G.J.4
  • 37
    • 85054322295 scopus 로고    scopus 로고
    • Oriented Response Networks. Available from: <>.
    • Zhou, Y., Ye, Q., Qiu, Q., Jiao, J., 2017. Oriented Response Networks. Available from: < arXiv:1701.01833>.
    • (2017)
    • Zhou, Y.1    Ye, Q.2    Qiu, Q.3    Jiao, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.