-
2
-
-
84990034437
-
Segnet: A deep convolutional encoder-decoder architecture for image segmentation
-
V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. CoRR, 2015.
-
(2015)
CoRR
-
-
Badrinarayanan, V.1
Kendall, A.2
Cipolla, R.3
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In Proceedings of the International Conference on Learning Representations, 2015.
-
(2015)
Proceedings of the International Conference on Learning Representations
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
6
-
-
85028056718
-
DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. CoRR, abs/1606.00915, 2016.
-
(2016)
CoRR, abs/1606.00915
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
7
-
-
84986290525
-
-
arXiv preprint arXiv
-
L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. arXiv preprint arXiv:1511.03339, 2015.
-
(2015)
Attention to Scale: Scale-aware Semantic Image Segmentation
-
-
Chen, L.-C.1
Yang, Y.2
Wang, J.3
Xu, W.4
Yuille, A.L.5
-
8
-
-
84911421600
-
Detect what you can: Detecting and representing objects using holistic models and body parts
-
X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1971-1978, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1971-1978
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Fidler, S.4
Urtasun, R.5
Yuille, A.6
-
9
-
-
84986255616
-
The cityscapes dataset for semantic urban scene understanding
-
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Cordts, M.1
Omran, M.2
Ramos, S.3
Rehfeld, T.4
Enzweiler, M.5
Benenson, R.6
Franke, U.7
Roth, S.8
Schiele, B.9
-
16
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. In International Journal of Computer Vision, 2010.
-
(2010)
International Journal of Computer Vision
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
21
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In Proceedings of the IEEE International Conference on Computer Vision, 2011.
-
(2011)
Proceedings of the IEEE International Conference on Computer Vision
-
-
Hariharan, B.1
Arbelaez, P.2
Bourdev, L.D.3
Maji, S.4
Malik, J.5
-
26
-
-
85019091282
-
Bayesian segnet: Model uncertainty in deep convolutional encoderdecoder architectures for scene understanding
-
A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian segnet: Model uncertainty in deep convolutional encoderdecoder architectures for scene understanding. CoRR, abs/1511.02680, 2015.
-
(2015)
CoRR, abs/1511.02680
-
-
Kendall, A.1
Badrinarayanan, V.2
Cipolla, R.3
-
28
-
-
85022344526
-
-
arXiv preprint arXiv
-
X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan. Semantic object parsing with graph lstm. arXiv preprint arXiv:1603.07063, 2016.
-
(2016)
Semantic Object Parsing with Graph Lstm
-
-
Liang, X.1
Shen, X.2
Feng, J.3
Lin, L.4
Yan, S.5
-
29
-
-
85006140198
-
-
arXiv preprint arXiv
-
X. Liang, X. Shen, D. Xiang, J. Feng, L. Lin, and S. Yan. Semantic object parsing with local-global long short-term memory. arXiv preprint arXiv:1511.04510, 2015.
-
(2015)
Semantic Object Parsing with Local-global Long Short-term Memory
-
-
Liang, X.1
Shen, X.2
Xiang, D.3
Feng, J.4
Lin, L.5
Yan, S.6
-
31
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision, 2014.
-
(2014)
Proceedings of the European Conference on Computer Vision
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ra-Manan, D.6
Dollár, P.7
Zitnick, C.L.8
-
35
-
-
84973860883
-
Semantic image segmentation via deep parsing network
-
Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In Proceedings of the IEEE International Conference on Computer Vision, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.C.4
Tang, X.5
-
37
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, et al. The role of context for object detection and semantic segmentation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
-
40
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors
-
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention, pages 234-241, 2015.
-
(2015)
Medical Image Computing and Computer-Assisted Intervention
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
46
-
-
85010055682
-
Multi-scale context aggregation by dilated convolutions
-
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR, 2015.
-
(2015)
CoRR
-
-
Yu, F.1
Koltun, V.2
-
47
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
-
48
-
-
85060194114
-
Semantic understanding of scenes through the ADE20K dataset
-
B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Semantic understanding of scenes through the ADE20K dataset. CoRR, abs/1608.05442, 2016.
-
(2016)
CoRR, abs/1608.05442
-
-
Zhou, B.1
Zhao, H.2
Puig, X.3
Fidler, S.4
Barriuso, A.5
Torralba, A.6
|