메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5168-5177

RefineNet: Multi-path refinement networks for high-resolution semantic segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; DEEP NEURAL NETWORKS; IMAGE RESOLUTION; NEURAL NETWORKS; OBJECT RECOGNITION; SEMANTIC WEB; SEMANTICS;

EID: 85041920965     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.549     Document Type: Conference Paper
Times cited : (2697)

References (48)
  • 2
    • 84990034437 scopus 로고    scopus 로고
    • Segnet: A deep convolutional encoder-decoder architecture for image segmentation
    • V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. CoRR, 2015.
    • (2015) CoRR
    • Badrinarayanan, V.1    Kendall, A.2    Cipolla, R.3
  • 6
    • 85028056718 scopus 로고    scopus 로고
    • DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
    • L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. CoRR, abs/1606.00915, 2016.
    • (2016) CoRR, abs/1606.00915
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 26
    • 85019091282 scopus 로고    scopus 로고
    • Bayesian segnet: Model uncertainty in deep convolutional encoderdecoder architectures for scene understanding
    • A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian segnet: Model uncertainty in deep convolutional encoderdecoder architectures for scene understanding. CoRR, abs/1511.02680, 2015.
    • (2015) CoRR, abs/1511.02680
    • Kendall, A.1    Badrinarayanan, V.2    Cipolla, R.3
  • 40
    • 84951834022 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors
    • O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention, pages 234-241, 2015.
    • (2015) Medical Image Computing and Computer-Assisted Intervention , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 46
    • 85010055682 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions
    • F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR, 2015.
    • (2015) CoRR
    • Yu, F.1    Koltun, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.