-
1
-
-
0001578518
-
A learning algorithm for Boltzmann machines
-
Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147-169.
-
(1985)
Cognitive Science
, vol.9
, pp. 147-169
-
-
Ackley, D.H.1
Hinton, G.E.2
Sejnowski, T.J.3
-
2
-
-
0000344740
-
Differential geometry of curved exponential families - Curvatures and information loss
-
Amari, S. (1982). Differential geometry of curved exponential families -curvatures and information loss. Annals of Statistics, 10, 357-385.
-
(1982)
Annals of Statistics
, vol.10
, pp. 357-385
-
-
Amari, S.1
-
4
-
-
0025898312
-
Dualistic geometry of the manifold higher-order neurons
-
Amari, S. (1991). Dualistic geometry of the manifold higher-order neurons. Neural Networks, 4, 443-451.
-
(1991)
Neural Networks
, vol.4
, pp. 443-451
-
-
Amari, S.1
-
5
-
-
0029587111
-
Information geometry of EM and EM algorithms for neural networks
-
Amari, S. (1995). Information geometry of EM and EM algorithms for neural networks. Neural Networks, 8, 1379-1408.
-
(1995)
Neural Networks
, vol.8
, pp. 1379-1408
-
-
Amari, S.1
-
6
-
-
0026835133
-
Information geometry of Boltzmann machines
-
Amari, S., Kurata, K., & Nagaoka, H. (1992). Information geometry of Boltzmann machines. IEEE Transactions on Neural Networks, 3, 260-271.
-
(1992)
IEEE Transactions on Neural Networks
, vol.3
, pp. 260-271
-
-
Amari, S.1
Kurata, K.2
Nagaoka, H.3
-
7
-
-
0347239886
-
Information geometry and mean field approximation: The α-projection approach
-
M. Opper, & D. Saad (Eds). Cambridge, MA: MIT Press
-
Amari, S., Ikeda, S., & Shimokawa, H. (2001). Information geometry and mean field approximation: The α-projection approach. In M. Opper, & D. Saad (Eds), Advanced mean field methods - Theory and practice, (pp. 241-257). Cambridge, MA: MIT Press.
-
(2001)
Advanced Mean Field Methods - Theory and Practice
, pp. 241-257
-
-
Amari, S.1
Ikeda, S.2
Shimokawa, H.3
-
11
-
-
49949144765
-
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
-
Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Physics, 7, 200-217.
-
(1967)
USSR Computational Mathematics and Physics
, vol.7
, pp. 200-217
-
-
Bregman, L.M.1
-
13
-
-
0002743439
-
On topical properties of f-divergence
-
Csiszár, I. (1967). On topical properties of f-divergence. Studia Mathematicarum Hungarica, 2, 329-339.
-
(1967)
Studia Mathematicarum Hungarica
, vol.2
, pp. 329-339
-
-
Csiszár, I.1
-
14
-
-
0004027463
-
-
Tech. Rep. No. CMU-CS-01-109. Pittsburgh, PA: School of Computer Science, Carnegie Mellon University
-
Della Pietra, S., Della Pietra, V., & Lafferty, J. (2002). Duality and auxiliary functions for Bregman distances (Tech. Rep. No. CMU-CS-01-109). Pittsburgh, PA: School of Computer Science, Carnegie Mellon University.
-
(2002)
Duality and Auxiliary Functions for Bregman Distances
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
15
-
-
0000852027
-
Second order efficiency of minimum contrast estimators in a curved exponential family
-
Eguchi, S. (1983). Second order efficiency of minimum contrast estimators in a curved exponential family. Annals of Statistics, 11, 793-803.
-
(1983)
Annals of Statistics
, vol.11
, pp. 793-803
-
-
Eguchi, S.1
-
16
-
-
84972567325
-
Geometry of minimum contrast
-
Eguchi, S. (1992). Geometry of minimum contrast. Hiroshima Mathematical Journal, 22, 631-647.
-
(1992)
Hiroshima Mathematical Journal
, vol.22
, pp. 631-647
-
-
Eguchi, S.1
-
17
-
-
85041158952
-
-
Paper presented at the SRCCS International Statistical Workshop, Seoul National University, June
-
Eguchi, S. (2002). U-boosting method for classification and information geometry. Paper presented at the SRCCS International Statistical Workshop, Seoul National University, June.
-
(2002)
U-boosting Method for Classification and Information Geometry
-
-
Eguchi, S.1
-
19
-
-
0007679252
-
Convergence of the wake-sleep algorithm
-
M. Kearns, S. Solla, & D. Cohn (Eds.). Cambridge, MA: MIT Press
-
Ikeda, S., Amari, S., & Nakahara, H. (1999) Convergence of the wake-sleep algorithm. In M. Kearns, S. Solla, & D. Cohn (Eds.), Advances in neural information processing systems, 11 (pp. 239-245). Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 239-245
-
-
Ikeda, S.1
Amari, S.2
Nakahara, H.3
-
21
-
-
84972560524
-
On the divergences of 1-conformally flat statistical manifolds
-
Kurose, T. (1994). On the divergences of 1-conformally flat statistical manifolds. Töhoko Mathematical Journal, 46, 427-433.
-
(1994)
Töhoko Mathematical Journal
, vol.46
, pp. 427-433
-
-
Kurose, T.1
-
22
-
-
0006472543
-
Statistical learning algorithms based on Bregman distances
-
Toronto, Canada: Fields Institute
-
Lafferty, J., Della Pietra, S., & Della Pietra, V. (1997). Statistical learning algorithms based on Bregman distances. In Proceedings of 1997 Canadian Workshop on Information Theory, pp. 77-80. Toronto, Canada: Fields Institute.
-
(1997)
Proceedings of 1997 Canadian Workshop on Information Theory
, pp. 77-80
-
-
Lafferty, J.1
Della Pietra, S.2
Della Pietra, V.3
-
23
-
-
0000772138
-
Statistical manifolds
-
S. Amari, O. Barndorff-Nielsen, R. Kass, S. Lauritzen, and C. R. Rao (Eds.). Hayward, CA: Institute of Mathematical Statistics
-
Lauritzen, S. (1987). Statistical manifolds. In S. Amari, O. Barndorff-Nielsen, R. Kass, S. Lauritzen, and C. R. Rao (Eds.), Differential geometry in statistical inference (pp. 163-216). Hayward, CA: Institute of Mathematical Statistics.
-
(1987)
Differential Geometry in Statistical Inference
, pp. 163-216
-
-
Lauritzen, S.1
-
24
-
-
84898999495
-
Boosting and maximum likelihood for exponential models
-
T. G. Dietterich, S. Becker, & Z. Ghahramani (eds.). Cambridge, MA: MIT Press
-
Lebanon, G., & Lafferty, J. (2002). Boosting and maximum likelihood for exponential models. In T. G. Dietterich, S. Becker, & Z. Ghahramani (eds.) Advances in neural information processing systems, 14 (pp. 447-454). Cambridge, MA: MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 447-454
-
-
Lebanon, G.1
Lafferty, J.2
-
25
-
-
84979885060
-
On realization of conformally-projectively flat statistical manifolds and the divergences
-
Matsuzoe, H. (1998). On realization of conformally-projectively flat statistical manifolds and the divergences. Hokkaido Mathematical Journal, 27, 409-421.
-
(1998)
Hokkaido Mathematical Journal
, vol.27
, pp. 409-421
-
-
Matsuzoe, H.1
-
26
-
-
0347870497
-
Geometry of contrast functions and conformal geometry
-
Matsuzoe, H. (1999). Geometry of contrast functions and conformal geometry. Hiroshima Mathematical Journal, 29, 175-191.
-
(1999)
Hiroshima Mathematical Journal
, vol.29
, pp. 175-191
-
-
Matsuzoe, H.1
-
27
-
-
84972534207
-
3-functions taking the minimum at the diagonal of the product manifold
-
3-functions taking the minimum at the diagonal of the product manifold. Hiroshima Mathematical Journal, 23, 327-332.
-
(1993)
Hiroshima Mathematical Journal
, vol.23
, pp. 327-332
-
-
Matumoto, T.1
-
28
-
-
0040673441
-
Robust blink source separation by beta-divergence
-
Mihoko, M., & Eguchi, S. (2002). Robust blink source separation by beta-divergence. Neural Computation, 14, 1859-1886.
-
(2002)
Neural Computation
, vol.14
, pp. 1859-1886
-
-
Mihoko, M.1
Eguchi, S.2
-
29
-
-
0040713277
-
Differential metrics in probability spaces
-
S. Amari, O. Barndorff-Nielsen, R. Kass, S. Lauritzen, & C. R. Rao (Eds.). Hayward, CA: Institute of Mathematical Statistics
-
Rao, C. R. (1987). Differential metrics in probability spaces. In S. Amari, O. Barndorff-Nielsen, R. Kass, S. Lauritzen, & C. R. Rao (Eds.), Differential geometry in statistical inference, (pp. 217-240). Hayward, CA: Institute of Mathematical Statistics.
-
(1987)
Differential Geometry in Statistical Inference
, pp. 217-240
-
-
Rao, C.R.1
-
30
-
-
0004267646
-
-
Princeton, NJ: Princeton University Press
-
Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ: Princeton University Press.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
31
-
-
84972577375
-
Compact locally Hessian manifolds
-
Shima, H. (1978). Compact locally Hessian manifolds. Osaka Journal of Mathematics, 15, 509-513.
-
(1978)
Osaka Journal of Mathematics
, vol.15
, pp. 509-513
-
-
Shima, H.1
-
34
-
-
0039016027
-
1-Conformally flat statistical submanifolds
-
Uohashi, K., Ohara, A., & Fujii, T. (2000). 1-Conformally flat statistical submanifolds. Osaka Journal of Mathematics, 37, 501-507.
-
(2000)
Osaka Journal of Mathematics
, vol.37
, pp. 501-507
-
-
Uohashi, K.1
Ohara, A.2
Fujii, T.3
-
35
-
-
0041095137
-
Bayesian invariant measurements of generalization
-
Zhu, H. Y., & Rohwer, R. (1995). Bayesian invariant measurements of generalization. Neural Processing Letter, 2, 28-31.
-
(1995)
Neural Processing Letter
, vol.2
, pp. 28-31
-
-
Zhu, H.Y.1
Rohwer, R.2
-
36
-
-
0345978971
-
Measurements of generalisation based on information geometry
-
S. W. Ellacott, J. C. Mason, & I. J. Anderson (Eds.). Norwell, MA: Kluwer
-
Zhu, H. Y., & Rohwer, R. (1997) Measurements of generalisation based on information geometry. In S. W. Ellacott, J. C. Mason, & I. J. Anderson (Eds.), Mathematics of neural networks: Model algorithms and applications (pp 394-398). Norwell, MA: Kluwer.
-
(1997)
Mathematics of Neural Networks: Model Algorithms and Applications
, pp. 394-398
-
-
Zhu, H.Y.1
Rohwer, R.2
|