메뉴 건너뛰기




Volumn 10, Issue 1, 2018, Pages

Building extraction in very high resolution remote sensing imagery using deep learning and guided filters

Author keywords

Building extraction; Deep learning; Guided filter; Very high resolution

Indexed keywords

BANDPASS FILTERS; BUILDINGS; EXTRACTION; IMAGE PROCESSING; IMAGE SEGMENTATION; LAND USE; LEARNING SYSTEMS; NETWORK ARCHITECTURE; PIXELS; REMOTE SENSING; SEMANTICS;

EID: 85040839625     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10010144     Document Type: Article
Times cited : (406)

References (52)
  • 1
    • 84947648698 scopus 로고    scopus 로고
    • Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images
    • Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images. Proc. IEEE. 2013, 101, 631-651
    • (2013) Proc. IEEE , vol.101 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 4
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258-270
    • (2012) Remote Sens. Environ , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 5
    • 85019757674 scopus 로고    scopus 로고
    • A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery
    • Lv, Z.Y.; He, H.; Benediktsson, J.A.; Huang, H. A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery. Remote Sens. 2016, 8, 814
    • (2016) Remote Sens , vol.8 , pp. 814
    • Lv, Z.Y.1    He, H.2    Benediktsson, J.A.3    Huang, H.4
  • 6
    • 85019762868 scopus 로고    scopus 로고
    • Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China
    • Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote Sens. 2016, 8, 954
    • (2016) Remote Sens , vol.8 , pp. 954
    • Tian, S.1    Zhang, X.2    Tian, J.3    Sun, Q.4
  • 7
    • 84905750174 scopus 로고    scopus 로고
    • Improving image classification in a complex wetland ecosystem through image fusion techniques
    • Kumar, A.L.; Sinha, P.; Taylor, S. Improving image classification in a complex wetland ecosystem through image fusion techniques. J. Appl. Remote Sens. 2014, 8, 083616
    • (2014) J. Appl. Remote Sens , vol.8
    • Kumar, A.L.1    Sinha, P.2    Taylor, S.3
  • 8
    • 84934294672 scopus 로고    scopus 로고
    • Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
    • Wang, J.; Song, J.; Chen, M.; Yang, Z. Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine. Int. J. Remote Sens. 2015, 36, 3144-3169
    • (2015) Int. J. Remote Sens , vol.36 , pp. 3144-3169
    • Wang, J.1    Song, J.2    Chen, M.3    Yang, Z.4
  • 10
    • 85010208970 scopus 로고    scopus 로고
    • Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks
    • Las Vegas, NV, USA, 26 June-1 July
    • Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks. In Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 680-688
    • (2016) Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition , pp. 680-688
    • Kampffmeyer, M.1    Salberg, A.B.2    Jenssen, R.3
  • 11
    • 84961381149 scopus 로고    scopus 로고
    • POL-SAR Image Classification Based onWishart DBN and Local Spatial Information
    • Liu, F.; Jiao, L.; Hou, B.; Yang, S. POL-SAR Image Classification Based onWishart DBN and Local Spatial Information. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3292-3308
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 3292-3308
    • Liu, F.1    Jiao, L.2    Hou, B.3    Yang, S.4
  • 12
    • 85017603808 scopus 로고    scopus 로고
    • Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection
    • arXiv
    • Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection. arXiv 2016, arXiv:1612.01337
    • (2016)
    • Marmanis, D.1    Schindler, K.2    Wegner, J.D.3    Galliani, S.4    Datcu, M.5    Stilla, U.6
  • 13
    • 0032590403 scopus 로고    scopus 로고
    • Optimisation of building detection in satellite images by combining multispectral classification and texture filtering
    • Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering. ISPRS J. Photogramm. Remote Sens. 1999, 54, 50-60
    • (1999) ISPRS J. Photogramm. Remote Sens , vol.54 , pp. 50-60
    • Zhang, Y.1
  • 14
    • 70449433268 scopus 로고    scopus 로고
    • A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy
    • Huang, X.; Zhang, L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy. Int. J. Remote Sens. 2009, 30, 3205-3221
    • (2009) Int. J. Remote Sens , vol.30 , pp. 3205-3221
    • Huang, X.1    Zhang, L.2
  • 15
    • 85027946946 scopus 로고    scopus 로고
    • Morphological Profiles Based on Differently Shaped Structuring Elements for Classification of Images With Very High Spatial Resolution
    • Lv, Z.Y.; Zhang, P.; Benediktsson, J.A.; Shi, W.Z. Morphological Profiles Based on Differently Shaped Structuring Elements for Classification of Images With Very High Spatial Resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 7, 4644-4652
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.7 , pp. 4644-4652
    • Lv, Z.Y.1    Zhang, P.2    Benediktsson, J.A.3    Shi, W.Z.4
  • 16
    • 85019694158 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using joint bilateral filter and graph cut based model
    • Wang, Y.; Song, H.; Zhang, Y. Spectral-spatial classification of hyperspectral images using joint bilateral filter and graph cut based model. Remote Sens. 2016, 8, 748
    • (2016) Remote Sens , vol.8 , pp. 748
    • Wang, Y.1    Song, H.2    Zhang, Y.3
  • 18
    • 84906343066 scopus 로고    scopus 로고
    • Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
    • arXiv
    • Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. arXiv 2014, arXiv:1311.2524
    • (2014)
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 20
    • 84990051868 scopus 로고    scopus 로고
    • Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
    • arXiv
    • Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv 2016, arXiv:1606.00915
    • (2016)
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 22
    • 85019872591 scopus 로고    scopus 로고
    • Technical Report; ONERA The French Aerospace Lab, DTIM & Univ. Bretagne-Sud & ENSTA ParisTech: Palaiseau, France
    • Audebert, N.; Boulch, A.; Lagrange, A.; Le Saux, B.; Lefevre, S. Deep Learning for Remote Sensing; Technical Report; ONERA The French Aerospace Lab, DTIM & Univ. Bretagne-Sud & ENSTA ParisTech: Palaiseau, France, 2016
    • (2016) Deep Learning for Remote Sensing
    • Audebert, N.1    Boulch, A.2    Lagrange, A.3    Le Saux, B.4    Lefevre, S.5
  • 27
    • 14644406807 scopus 로고    scopus 로고
    • Results and implications of a study of fifteen years of satellite image classification experiments
    • Wilkinson, G.G. Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Trans. Geosci. Remote Sens. 2005, 43, 433-440
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 433-440
    • Wilkinson, G.G.1
  • 31
    • 85019898857 scopus 로고    scopus 로고
    • Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network
    • Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498
    • (2017) Remote Sens , vol.9 , pp. 498
    • Fu, G.1    Liu, C.2    Zhou, R.3    Sun, T.4    Zhang, Q.5
  • 32
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification
    • Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645-657
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 33
    • 85016026118 scopus 로고    scopus 로고
    • Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks
    • Taipei, Taiwan, 20-24 November
    • Audebert, N.; Saux, B.L.; Lefèvre, S. Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. In Proceedings of the Computer Vision-ACCV 2016, Taipei, Taiwan, 20-24 November 2016; pp. 180-196
    • (2016) Proceedings of the Computer Vision-ACCV 2016 , pp. 180-196
    • Audebert, N.1    Saux, B.L.2    Lefèvre, S.3
  • 36
    • 84956678436 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • arXiv
    • Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv 2014, arXiv:1412.7062
    • (2014)
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 37
    • 85011384474 scopus 로고    scopus 로고
    • Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery
    • arXiv
    • Sherrah, J. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery. arXiv 2016, arXiv:1606.02585
    • (2016)
    • Sherrah, J.1
  • 39
    • 84906788402 scopus 로고    scopus 로고
    • Features, Color Spaces, and Boosting: New Insights on Semantic Classification of Remote Sensing Images
    • Tokarczyk, P.; Wegner, J.D.; Walk, S.; Schindler, K. Features, Color Spaces, and Boosting: New Insights on Semantic Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2014, 53, 280-295
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 280-295
    • Tokarczyk, P.1    Wegner, J.D.2    Walk, S.3    Schindler, K.4
  • 41
    • 84994217941 scopus 로고    scopus 로고
    • Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
    • Volpi, M.; Tuia, D. Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 55, 881-893
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 43
    • 85083953063 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition
    • arXiv
    • Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556
    • (2015)
    • Simonyan, K.1    Zisserman, A.2
  • 45
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 50
    • 84939525969 scopus 로고    scopus 로고
    • Multimodal medical image fusion using modified fusion rules and guided filter
    • Communication & Automation, Noida, India, 15-16 May
    • Pritika; Budhiraja, S. Multimodal medical image fusion using modified fusion rules and guided filter. In Proceedings of the International Conference on Computing, Communication & Automation, Noida, India, 15-16 May 2015; pp. 1067-1072
    • (2015) Proceedings of the International Conference on Computing , pp. 1067-1072
    • Pritika Budhiraja, S.1
  • 52
    • 85019963914 scopus 로고    scopus 로고
    • Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images
    • Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images. Remote Sens. 2017, 9, 446
    • (2017) Remote Sens , vol.9 , pp. 446
    • Wang, H.1    Wang, Y.2    Zhang, Q.3    Xiang, S.4    Pan, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.