메뉴 건너뛰기




Volumn 39, Issue 5, 2018, Pages 1343-1376

Visual descriptors for content-based retrieval of remote-sensing images

Author keywords

[No Author keywords available]

Indexed keywords

CONTENT BASED RETRIEVAL; LAND USE; NEURAL NETWORKS; REMOTE SENSING; URANIUM COMPOUNDS;

EID: 85040811567     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2017.1399472     Document Type: Article
Times cited : (111)

References (77)
  • 1
    • 84896319674 scopus 로고    scopus 로고
    • Remote Sensing Image Retrieval with Global Morphological Texture Descriptors
    • Aptoula, E. 2014. “Remote Sensing Image Retrieval with Global Morphological Texture Descriptors.” Geoscience and Remote Sensing, IEEE Transactions On 52 (5): 3023–3034. doi:10.1109/TGRS.2013.2268736.
    • (2014) Geoscience and Remote Sensing, IEEE Transactions On , vol.52 , Issue.5 , pp. 3023-3034
    • Aptoula, E.1
  • 3
    • 35949000255 scopus 로고    scopus 로고
    • Generalization of the Cooccurrence Matrix for Colour Images: Application to Colour Texture
    • Arvis, V., C. Debain, M. Berducat, and A. Benassi. 2004. “Generalization of the Cooccurrence Matrix for Colour Images: Application to Colour Texture.” Image Analysis & Stereology 23: 1.
    • (2004) Image Analysis & Stereology , vol.23 , pp. 1
    • Arvis, V.1    Debain, C.2    Berducat, M.3    Benassi, A.4
  • 6
    • 84936986539 scopus 로고    scopus 로고
    • Local Detectors and Compact Descriptors for Visual Search: A Quantitative Comparison
    • Bianco, S., D. Mazzini, D. P. Pau, and R. Schettini. 2015. “Local Detectors and Compact Descriptors for Visual Search: A Quantitative Comparison.” Digital Signal Processing 44: 1–13. doi:10.1016/j.dsp.2015.06.001.
    • (2015) Digital Signal Processing , vol.44 , pp. 1-13
    • Bianco, S.1    Mazzini, D.2    Pau, D.P.3    Schettini, R.4
  • 7
    • 34547700614 scopus 로고    scopus 로고
    • Evaluation of the Effects of Gabor Filter Parameters on Texture Classification
    • Bianconi, F., and A. Fernández. 2007. “Evaluation of the Effects of Gabor Filter Parameters on Texture Classification.” Pattern Recognition 40 (12): 3325–3335. doi:10.1016/j.patcog.2007.04.023.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3325-3335
    • Bianconi, F.1    Fernández, A.2
  • 8
    • 82355182999 scopus 로고    scopus 로고
    • Theoretical and Experimental Comparison of Different Approaches for Color Texture Classification
    • Bianconi, F., R. Harvey, P. Southam, and A. Fernández. 2011. “Theoretical and Experimental Comparison of Different Approaches for Color Texture Classification.” Journal of Electronic Imaging 20: 4. doi:10.1117/1.3651210.
    • (2011) Journal of Electronic Imaging , vol.20 , pp. 4
    • Bianconi, F.1    Harvey, R.2    Southam, P.3    Fernández, A.4
  • 12
    • 44649157037 scopus 로고    scopus 로고
    • CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval
    • Berlin/Heidelberg: Springer
    • Chatzichristofis, S. A., and Y. S. Boutalis. 2008. “CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval.” In Computer Vision Systems, 312–322. Berlin/Heidelberg: Springer.
    • (2008) Computer Vision Systems , pp. 312-322
    • Chatzichristofis, S.A.1    Boutalis, Y.S.2
  • 15
    • 0033334587 scopus 로고    scopus 로고
    • A Relevance Feedback Mechanism for Content-Based Image Retrieval
    • Ciocca, G., and R. Schettini. 1999. “A Relevance Feedback Mechanism for Content-Based Image Retrieval.” Information Processing & Management 35 (5): 605–632. doi:10.1016/S0306-4573(99)00021-7.
    • (1999) Information Processing & Management , vol.35 , Issue.5 , pp. 605-632
    • Ciocca, G.1    Schettini, R.2
  • 17
    • 84947126165 scopus 로고    scopus 로고
    • Remote Sensing Image Classification Exploiting Multiple Kernel Learning
    • Prague Cusano, C., P. Napoletano, and R. Schettini. 2015. “Remote Sensing Image Classification Exploiting Multiple Kernel Learning.” IEEE Geoscience and Remote Sensing Letters 12 (11): 2331–2335. doi:10.1109/LGRS.2015.2476365.
    • (2015) IEEE Geoscience and Remote Sensing Letters , vol.12 , Issue.11 , pp. 2331-2335
    • Prague Cusano, C.1    Napoletano, P.2    Schettini, R.3
  • 18
    • 78650941566 scopus 로고    scopus 로고
    • Satellite Image Classification via Two-Layer Sparse Coding with Biased Image Representation
    • Dai, D., and W. Yang. 2011. “Satellite Image Classification via Two-Layer Sparse Coding with Biased Image Representation.” Geoscience and Remote Sensing Letters 8 (1): 173–176. doi:10.1109/LGRS.2010.2055033.
    • (2011) Geoscience and Remote Sensing Letters , vol.8 , Issue.1 , pp. 173-176
    • Dai, D.1    Yang, W.2
  • 19
    • 43249093335 scopus 로고    scopus 로고
    • Image Retrieval: Ideas, Influences, and Trends of the New Age
    • Datta, R., D. Joshi, L. Jia, and J. Z. Wang. 2008. “Image Retrieval: Ideas, Influences, and Trends of the New Age.” ACM Computing Surveys (CSUR) 40 (2): 5. doi:10.1145/1348246.1348248.
    • (2008) ACM Computing Surveys (CSUR) , vol.40 , Issue.2 , pp. 5
    • Datta, R.1    Joshi, D.2    Jia, L.3    Wang, J.Z.4
  • 21
    • 84921031076 scopus 로고    scopus 로고
    • A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval
    • Demir, B., and L. Bruzzone. 2015. “A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval.” Geoscience and Remote Sensing, IEEE Transactions On 53 (5): 2323–2334. doi:10.1109/TGRS.2014.2358804.
    • (2015) Geoscience and Remote Sensing, IEEE Transactions On , vol.53 , Issue.5 , pp. 2323-2334
    • Demir, B.1    Bruzzone, L.2
  • 23
    • 40549119527 scopus 로고    scopus 로고
    • Features for Image Retrieval: An Experimental Comparison
    • Deselaers, T., D. Keysers, and H. Ney. 2008. “Features for Image Retrieval: An Experimental Comparison.” Information Retrieval 11 (2): 77–107. doi:10.1007/s10791-007-9039-3.
    • (2008) Information Retrieval , vol.11 , Issue.2 , pp. 77-107
    • Deselaers, T.1    Keysers, D.2    Ney, H.3
  • 25
    • 33947617297 scopus 로고    scopus 로고
    • Interactive Remote-Sensing Image Retrieval Using Active Relevance Feedback
    • Ferecatu, M., and N. Boujemaa. 2007. “Interactive Remote-Sensing Image Retrieval Using Active Relevance Feedback.” Geoscience and Remote Sensing, IEEE Transactions On 45 (4): 818–826. doi:10.1109/TGRS.2007.892007.
    • (2007) Geoscience and Remote Sensing, IEEE Transactions On , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 26
    • 85048709927 scopus 로고    scopus 로고
    • Visual Object Recognition. Morgan & Claypool Publishers
    • Grauman, K., and B. Leibe. 2010. Visual Object Recognition. Morgan & Claypool Publishers.
    • (2010)
    • Grauman, K.1    Leibe, B.2
  • 27
    • 33644616810 scopus 로고    scopus 로고
    • Illumination-Invariant Morphological Texture Classification
    • edited by C. Ronse, L. Najman, and E. Decencire, of Computational Imaging and Vision, Netherlands: Springer Berlin/ Heidelberg
    • Hanbury, A., U. Kandaswamy, and D. Adjeroh. 2005. “Illumination-Invariant Morphological Texture Classification.” In: Mathematical Morphology: 40 Years On, edited by C. Ronse, L. Najman, and E. Decencire, Vol. 30, of Computational Imaging and Vision, 377–386. Netherlands: Springer Berlin/ Heidelberg.
    • (2005) Mathematical Morphology: 40 Years On , vol.30 , pp. 377-386
    • Hanbury, A.1    Kandaswamy, U.2    Adjeroh, D.3
  • 28
    • 0018466704 scopus 로고
    • Statistical and Structural Approaches to Texture
    • Haralick, R. M. 1979. “Statistical and Structural Approaches to Texture.” Proceedings of the IEEE 67 (5): 786–804. doi:10.1109/PROC.1979.11328.
    • (1979) Proceedings of the IEEE , vol.67 , Issue.5 , pp. 786-804
    • Haralick, R.M.1
  • 31
    • 0034441543 scopus 로고    scopus 로고
    • Incorporate Support Vector Machines to Content-Based Image Retrieval with Relevance Feedback
    • IEEE
    • Hong, P., Q. Tian, and T. S. Huang. 2000. “Incorporate Support Vector Machines to Content-Based Image Retrieval with Relevance Feedback.” In International Conference on Image Processing. Vol. 3, 750–753. IEEE.
    • (2000) International Conference on Image Processing , vol.3 , pp. 750-753
    • Hong, P.1    Tian, Q.2    Huang, T.S.3
  • 32
    • 0031672914 scopus 로고    scopus 로고
    • A Multiscale Representation Including Opponent Color Features for Texture Recognition
    • Jain, A., and G. Healey. 1998. “A Multiscale Representation Including Opponent Color Features for Texture Recognition.” Image Processing, IEEE Transactions On 7 (1): 124–128. doi:10.1109/83.650858.
    • (1998) Image Processing, IEEE Transactions On , vol.7 , Issue.1 , pp. 124-128
    • Jain, A.1    Healey, G.2
  • 36
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet Classification with Deep Convolutional Neural Networks
    • NewYork, NY: Curran Associates Inc
    • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “Imagenet Classification with Deep Convolutional Neural Networks.” In Advances in Neural Information Processing Systems, 1097–1105. NewYork, NY: Curran Associates Inc.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 37
    • 84885649366 scopus 로고    scopus 로고
    • Relevance Feedback in Content-Based Image Retrieval: A Survey
    • Berlin/Heidelberg: Springer
    • Li, J., and N. M. Allinson. 2013. “Relevance Feedback in Content-Based Image Retrieval: A Survey.” In Handbook on Neural Information Processing, 433–469. Berlin/Heidelberg: Springer.
    • (2013) Handbook on Neural Information Processing , pp. 433-469
    • Li, J.1    Allinson, N.M.2
  • 38
    • 84866030327 scopus 로고    scopus 로고
    • Content-Based Image Retrieval Using Color Difference Histogram
    • Liu, G.-H., and J.-Y. Yang. 2013. “Content-Based Image Retrieval Using Color Difference Histogram.” Pattern Recognition 46 (1): 188–198. doi:10.1016/j.patcog.2012.06.001.
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 188-198
    • Liu, G.-H.1    Yang, J.-Y.2
  • 39
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive Image Features from Scale-Invariant Keypoints
    • Lowe, D. G. 2004. “Distinctive Image Features from Scale-Invariant Keypoints.” International Journal of Computer Vision 60 (2): 91–110. doi:10.1023/B:VISI.0000029664.99615.94.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 40
    • 85018468901 scopus 로고    scopus 로고
    • Deep Hashing for Scalable Image Search
    • Lu, J., V. E. Liong, and J. Zhou. 2017. “Deep Hashing for Scalable Image Search.” IEEE Transactions on Image Processing 26 (5): 2352–2367. doi:10.1109/TIP.2017.2678163.
    • (2017) IEEE Transactions on Image Processing , vol.26 , Issue.5 , pp. 2352-2367
    • Lu, J.1    Liong, V.E.2    Zhou, J.3
  • 41
    • 2642583120 scopus 로고    scopus 로고
    • Classification with Color and Texture: Jointly or Separately?
    • Mäenpää, T., and M. Pietikäinen. 2004. “Classification with Color and Texture: Jointly or Separately?.” Pattern Recognition 37 (8): 1629–1640. doi:10.1016/j.patcog.2003.11.011.
    • (2004) Pattern Recognition , vol.37 , Issue.8 , pp. 1629-1640
    • Mäenpää, T.1    Pietikäinen, M.2
  • 45
    • 84949921276 scopus 로고    scopus 로고
    • Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks
    • Marmanis, D., M. Datcu, T. Esch, and U. Stilla. 2016. “Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks.” IEEE Geoscience and Remote Sensing Letters 13 (1): 105–109. doi:10.1109/LGRS.2015.2499239.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 48
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns
    • Ojala, T., M. Pietikäinen, and T. Mänepää. 2002. “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns.” IEEE Transactions Pattern Analysis Mach Intelligent 24 (7): 971–987. doi:10.1109/TPAMI.2002.1017623.
    • (2002) IEEE Transactions Pattern Analysis Mach Intelligent , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mänepää, T.3
  • 49
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope
    • Oliva, A., and A. Torralba. 2001. “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope.” International Journal of Computer Vision 42 (3): 145–175. doi:10.1023/A:1011139631724.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 50
    • 84901839726 scopus 로고    scopus 로고
    • Performance Analysis of State-Of-the-Art Representation Methods for Geographical Image Retrieval and Categorization
    • Ozkan, S., T. Ates, E. Tola, M. Soysal, and E. Esen. 2014. “Performance Analysis of State-Of-the-Art Representation Methods for Geographical Image Retrieval and Categorization.” Geoscience and Remote Sensing Letters, IEEE 11 (11): 1996–2000. doi:10.1109/LGRS.2014.2316143.
    • (2014) Geoscience and Remote Sensing Letters, IEEE , vol.11 , Issue.11 , pp. 1996-2000
    • Ozkan, S.1    Ates, T.2    Tola, E.3    Soysal, M.4    Esen, E.5
  • 51
    • 84938879619 scopus 로고    scopus 로고
    • A Semi-Supervised Learning Algorithm for Relevance Feedback and Collaborative Image Retrieval
    • Pedronette, D. C. Guimarães, R. T. Calumby, and R. D. S. Torres. 2015. “A Semi-Supervised Learning Algorithm for Relevance Feedback and Collaborative Image Retrieval.” EURASIP Journal on Image and Video Processing 2015 (1): 1–15.
    • (2015) EURASIP Journal on Image and Video Processing , vol.2015 , Issue.1 , pp. 1-15
    • Pedronette, D.C.G.1    Calumby, R.T.2    Torres, R.D.S.3
  • 54
    • 0141928272 scopus 로고    scopus 로고
    • Relevance Feedback Techniques in Image Retrieval
    • Berlin/Heidelberg: Springer
    • Rui, Y., and T. S. Huang. 2001. “Relevance Feedback Techniques in Image Retrieval.” In Principles of Visual Information Retrieval, 219–258. Berlin/Heidelberg: Springer.
    • (2001) Principles of Visual Information Retrieval , pp. 219-258
    • Rui, Y.1    Huang, T.S.2
  • 55
    • 0032663356 scopus 로고    scopus 로고
    • Image Retrieval: Current Techniques, Promising Directions, and Open Issues
    • Rui, Y., T. S. Huang, and S.-F. Chang. 1999. “Image Retrieval: Current Techniques, Promising Directions, and Open Issues.” Journal of Visual Communication and Image Representation 10 (1): 39–62. doi:10.1006/jvci.1999.0413.
    • (1999) Journal of Visual Communication and Image Representation , vol.10 , Issue.1 , pp. 39-62
    • Rui, Y.1    Huang, T.S.2    Chang, S.-F.3
  • 58
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in Neural Networks: An Overview
    • Schmidhuber, J. 2015. “Deep Learning in Neural Networks: An Overview.” Neural Networks 61: 85–117. doi:10.1016/j.neunet.2014.09.003.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 66
    • 84907693985 scopus 로고    scopus 로고
    • Bag-Of-Words Representation in Image Annotation: A Review
    • Tsai, C.-F. 2012. “Bag-Of-Words Representation in Image Annotation: A Review.” In ISRN Artificial Intelligence, 2012.
    • (2012) ISRN Artificial Intelligence, 2012
    • Tsai, C.-F.1
  • 67
    • 84937118999 scopus 로고    scopus 로고
    • MatConvNet – Convolutional Neural Networks for MATLAB
    • abs/1412.4564
    • Vedaldi, A., and K. Lenc. 2014. “MatConvNet – Convolutional Neural Networks for MATLAB.” CoRR. abs/1412.4564.
    • (2014) Corr
    • Vedaldi, A.1    Lenc, K.2
  • 69
    • 77954758560 scopus 로고    scopus 로고
    • Robust Image Retrieval Based on Color Histogram of Local Feature Regions
    • Wang, X.-Y., W. Jun-Feng, and H.-Y. Yang. 2010. “Robust Image Retrieval Based on Color Histogram of Local Feature Regions.” Multimedia Tools and Applications 49 (2): 323–345. doi:10.1007/s11042-009-0362-0.
    • (2010) Multimedia Tools and Applications , vol.49 , Issue.2 , pp. 323-345
    • Wang, X.-Y.1    Jun-Feng, W.2    Yang, H.-Y.3
  • 73
    • 84872918592 scopus 로고    scopus 로고
    • Geographic Image Retrieval Using Local Invariant Features
    • Yang, Y., and S. Newsam. 2013. “Geographic Image Retrieval Using Local Invariant Features.” Geoscience and Remote Sensing, IEEE Transactions On 51 (2): 818–832. doi:10.1109/TGRS.2012.2205158.
    • (2013) Geoscience and Remote Sensing, IEEE Transactions On , vol.51 , Issue.2 , pp. 818-832
    • Yang, Y.1    Newsam, S.2
  • 75
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and Understanding Convolutional Networks
    • Berlin/Heidelberg: Springer
    • Zeiler, M. D., and R. Fergus. 2014. “Visualizing and Understanding Convolutional Networks.” In Computer Vision–ECCV 2014, 818–833. Berlin/Heidelberg: Springer.
    • (2014) Computer Vision–ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 77
    • 0037708475 scopus 로고    scopus 로고
    • Relevance Feedback in Image Retrieval: A Comprehensive Review
    • Zhou, X. S., and T. S. Huang. 2003. “Relevance Feedback in Image Retrieval: A Comprehensive Review.” Multimedia Systems 8 (6): 536–544. doi:10.1007/s00530-002-0070-3.
    • (2003) Multimedia Systems , vol.8 , Issue.6 , pp. 536-544
    • Zhou, X.S.1    Huang, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.