메뉴 건너뛰기




Volumn 10, Issue 1, 2018, Pages

Comparing pixel- and object-based approaches in effectively classifying wetland-dominated landscapes

Author keywords

Lake Baikal; Maximum likelihood; Near infrared; Quickbird; Random forest; Segmentation

Indexed keywords

AQUATIC ECOSYSTEMS; CATCHMENTS; DECISION TREES; ECOLOGY; ECOSYSTEMS; IMAGE SEGMENTATION; INFRARED DEVICES; ITERATIVE METHODS; LAKES; MAXIMUM LIKELIHOOD; MAXIMUM LIKELIHOOD ESTIMATION; MOBILE TELECOMMUNICATION SYSTEMS; REMOTE SENSING; STATISTICAL TESTS; VEGETATION; WETLANDS;

EID: 85040678879     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10010046     Document Type: Article
Times cited : (51)

References (77)
  • 1
    • 0033825946 scopus 로고    scopus 로고
    • The value of wetlands: Importance of scale and landscape setting
    • Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25-33
    • (2000) Ecol. Econ , vol.35 , pp. 25-33
    • Mitsch, W.J.1    Gosselink, J.G.2
  • 3
    • 84871937258 scopus 로고    scopus 로고
    • Current state of knowledge regarding the world's wetlands and their future under global climate change: A synthesis
    • Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current state of knowledge regarding the world's wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2012, 75, 151-167
    • (2012) Aquat. Sci , vol.75 , pp. 151-167
    • Junk, W.J.1    An, S.2    Finlayson, C.M.3    Gopal, B.4    Květ, J.5    Mitchell, S.A.6    Mitsch, W.J.7    Robarts, R.D.8
  • 5
    • 84926621735 scopus 로고    scopus 로고
    • Geographically isolated wetlands are important biogeochemical reactors on the landscape
    • Marton, J.M.; Creed, I.F.; Lewis, D.B.; Lane, C.R.; Basu, N.B.; Cohen, M.J.; Craft, C.B. Geographically isolated wetlands are important biogeochemical reactors on the landscape. BioScience 2015, 65, 408-418
    • (2015) BioScience , vol.65 , pp. 408-418
    • Marton, J.M.1    Creed, I.F.2    Lewis, D.B.3    Lane, C.R.4    Basu, N.B.5    Cohen, M.J.6    Craft, C.B.7
  • 6
    • 0000036056 scopus 로고
    • The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979-1990
    • Winter, T.C.; Rosenberry, D.O. The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979-1990. Wetlands 1995, 15, 193-211
    • (1995) Wetlands , vol.15 , pp. 193-211
    • Winter, T.C.1    Rosenberry, D.O.2
  • 7
    • 84866153885 scopus 로고    scopus 로고
    • The fill-spill hydrology of prairie wetland complexes during drought and deluge
    • Shaw, D.A.; Vanderkamp, G.; Conly, F.M.; Pietroniro, A.; Martz, L. The fill-spill hydrology of prairie wetland complexes during drought and deluge. Hydrol. Process. 2012, 26, 3147-3156
    • (2012) Hydrol. Process , vol.26 , pp. 3147-3156
    • Shaw, D.A.1    Vanderkamp, G.2    Conly, F.M.3    Pietroniro, A.4    Martz, L.5
  • 8
    • 0033383014 scopus 로고    scopus 로고
    • Biodiversity in southeastern, seasonally ponded, isolated wetlands: Management and policy perspectives for research and conservation
    • Kirkman, L.K.; Golladay, S.W.; Laclaire, L.; Sutter, R. Biodiversity in southeastern, seasonally ponded, isolated wetlands: Management and policy perspectives for research and conservation. J. N. Am. Benthol. Soc. 1999, 18, 553-562
    • (1999) J. N. Am. Benthol. Soc , vol.18 , pp. 553-562
    • Kirkman, L.K.1    Golladay, S.W.2    Laclaire, L.3    Sutter, R.4
  • 11
    • 37849189784 scopus 로고    scopus 로고
    • Use of cotton gin trash to enhance denitrification in restored forested wetlands
    • Ullah, S.; Faulkner, S.P. Use of cotton gin trash to enhance denitrification in restored forested wetlands. For. Ecol. Manag. 2006, 237, 557-563
    • (2006) For. Ecol. Manag , vol.237 , pp. 557-563
    • Ullah, S.1    Faulkner, S.P.2
  • 12
    • 84939873909 scopus 로고    scopus 로고
    • Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery
    • Lane, C.; Anenkhonov, O.; Liu, H.; Autrey, B.; Chepinoga, V. Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery. Wetl. Ecol. Manag. 2015, 23, 195-214
    • (2015) Wetl. Ecol. Manag , vol.23 , pp. 195-214
    • Lane, C.1    Anenkhonov, O.2    Liu, H.3    Autrey, B.4    Chepinoga, V.5
  • 13
    • 83155175753 scopus 로고    scopus 로고
    • Calculating the Ecosystem Service of Water Storage in Isolated Wetlands using LiDAR in North Central Florida, USA
    • Lane, C.R.; D'Amico, E. Calculating the Ecosystem Service of Water Storage in Isolated Wetlands using LiDAR in North Central Florida, USA. Wetlands 2010, 30, 967-977
    • (2010) Wetlands , vol.30 , pp. 967-977
    • Lane, C.R.1    D'Amico, E.2
  • 15
    • 0036814955 scopus 로고    scopus 로고
    • Satellite remote sensing of wetland
    • Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetland. Wetl. Ecol. Manag. 2002, 10, 381-402
    • (2002) Wetl. Ecol. Manag , vol.10 , pp. 381-402
    • Ozesmi, S.L.1    Bauer, M.E.2
  • 16
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
    • Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2009, 18, 281-296
    • (2009) Wetl. Ecol. Manag , vol.18 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 17
    • 84959009355 scopus 로고    scopus 로고
    • The challenges of remote monitoring of wetlands
    • Gallant, A. The challenges of remote monitoring of wetlands. Remote Sens. 2015, 7, 10938-10950
    • (2015) Remote Sens , vol.7 , pp. 10938-10950
    • Gallant, A.1
  • 18
    • 78349255249 scopus 로고    scopus 로고
    • Satellite remote sensing of isolated wetlands using object-oriented classification of Landsat-7 data
    • Frohn, R.C.; Reif, M.; Lane, C.; Autrey, B. Satellite remote sensing of isolated wetlands using object-oriented classification of Landsat-7 data. Wetlands 2009, 29, 931-941
    • (2009) Wetlands , vol.29 , pp. 931-941
    • Frohn, R.C.1    Reif, M.2    Lane, C.3    Autrey, B.4
  • 19
    • 84870760985 scopus 로고    scopus 로고
    • Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data
    • Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data. Remote Sens. 2012, 4, 2661-2693
    • (2012) Remote Sens , vol.4 , pp. 2661-2693
    • Immitzer, M.1    Atzberger, C.2    Koukal, T.3
  • 20
    • 85008210901 scopus 로고    scopus 로고
    • Using mixed objects in the training of object-based image classifications
    • Costa, H.; Foody, G.M.; Boyd, D.S. Using mixed objects in the training of object-based image classifications. Remote Sens. Environ. 2017, 190, 188-197
    • (2017) Remote Sens. Environ , vol.190 , pp. 188-197
    • Costa, H.1    Foody, G.M.2    Boyd, D.S.3
  • 23
    • 0003588753 scopus 로고    scopus 로고
    • 5th ed ERDASWorldwide Headquarters: Buford Highway, NE, USA; Atlanta, GA, USA
    • Earth Resources Data Analysis System (ERDAS). ERDAS Field Guide, 5th ed.; ERDASWorldwide Headquarters: Buford Highway, NE, USA; Atlanta, GA, USA, 1999; pp. 227-232
    • (1999) ERDAS Field Guide , pp. 227-232
  • 25
    • 84903441127 scopus 로고    scopus 로고
    • Classification of multispectral images using random forest algorithm
    • Akar, ö.; Güngör, O. Classification of multispectral images using random forest algorithm. J. Geodesy Geoinform. 2012, 1, 105-112
    • (2012) J. Geodesy Geoinform , vol.1 , pp. 105-112
    • Akar, O.1    Güngör, O.2
  • 26
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M.; Draguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24-31
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Draguţ, L.2
  • 27
    • 84937918615 scopus 로고    scopus 로고
    • On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping
    • Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489-8515
    • (2015) Remote Sens , vol.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 28
    • 79960743609 scopus 로고    scopus 로고
    • Object-oriented mapping of landslides using random forests
    • Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using random forests. Remote Sens. Environ. 2011, 115, 2564-2577
    • (2011) Remote Sens. Environ , vol.115 , pp. 2564-2577
    • Stumpf, A.1    Kerle, N.2
  • 29
    • 84897879307 scopus 로고    scopus 로고
    • Object-oriented mapping of urban trees using random forest classifiers
    • Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinform. 2014, 26, 235-245
    • (2014) Int. J. Appl. Earth Obs. Geoinform , vol.26 , pp. 235-245
    • Puissant, A.1    Rougier, S.2    Stumpf, A.3
  • 31
    • 84930017658 scopus 로고    scopus 로고
    • Object-based image analysis in wetland research: A review
    • Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 2015, 7, 6380-6413
    • (2015) Remote Sens , vol.7 , pp. 6380-6413
    • Dronova, I.1
  • 32
    • 85013629497 scopus 로고    scopus 로고
    • Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images
    • Husson, E.; Ecke, F.; Reese, H. Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images. Remote Sens. 2016, 8, 724
    • (2016) Remote Sens , vol.8 , pp. 724
    • Husson, E.1    Ecke, F.2    Reese, H.3
  • 33
    • 85019627032 scopus 로고    scopus 로고
    • Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery
    • Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 13-31
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.130 , pp. 13-31
    • Mahdianpari, M.1    Salehi, B.2    Mohammadimanesh, F.3    Motagh, M.4
  • 34
    • 84957900257 scopus 로고    scopus 로고
    • Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs
    • Ariel, E.; Salas, L.; Boykin, K.; Valdez, R. Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs. Remote Sens. 2016, 8, 78
    • (2016) Remote Sens , vol.8 , pp. 78
    • Ariel, E.1    Salas, L.2    Boykin, K.3    Valdez, R.4
  • 35
    • 85019762868 scopus 로고    scopus 로고
    • Random Forest Classification of Wetland Land covers from Multi-Sensor Data in the Arid Region of Xinjiang, China
    • Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Land covers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote Sens. 2016, 8, 954
    • (2016) Remote Sens , vol.8 , pp. 954
    • Tian, S.1    Zhang, X.2    Tian, J.3    Sun, Q.4
  • 36
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations formonitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations formonitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 37
    • 0026835285 scopus 로고
    • Atmospherically resistant vegetation index (ARVI) for EOS-MODIS
    • Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261-270
    • (1992) IEEE Trans. Geosci. Remote Sens , vol.30 , pp. 261-270
    • Kaufman, Y.J.1    Tanre, D.2
  • 38
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295-309
    • (1988) Remote Sens. Environ , vol.25 , pp. 295-309
    • Huete, A.R.1
  • 39
    • 0025589465 scopus 로고
    • Calculating the vegetation index faster
    • Crippen, R. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71-73
    • (1990) Remote Sens. Environ , vol.34 , pp. 71-73
    • Crippen, R.1
  • 41
    • 70350041389 scopus 로고    scopus 로고
    • Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices
    • Bwangoy, J.; Hansen, M.; Roy, D.; DeGrandi, G.; Justice, C. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 2010, 114, 73-86
    • (2010) Remote Sens. Environ , vol.114 , pp. 73-86
    • Bwangoy, J.1    Hansen, M.2    Roy, D.3    DeGrandi, G.4    Justice, C.5
  • 42
    • 34047138873 scopus 로고    scopus 로고
    • Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data
    • Wright, C.; Gallant, A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582-605
    • (2007) Remote Sens. Environ , vol.107 , pp. 582-605
    • Wright, C.1    Gallant, A.2
  • 44
    • 85040666481 scopus 로고    scopus 로고
    • Britannica Educational Publishing:Chicago, IL, USA
    • Rafferty, J. The Living Earth: Lakes and Wetlands; Britannica Educational Publishing:Chicago, IL, USA, 2011; ISBN 139781615304035
    • (2011) The Living Earth: Lakes and Wetlands
    • Rafferty, J.1
  • 45
    • 84918787543 scopus 로고    scopus 로고
    • Barguzin rift valley: Sedimentogenesis and paleogeography (Baikalian area, Russia)
    • Kolomiets, V.L.; Budaev, R.T. Barguzin rift valley: Sedimentogenesis and paleogeography (Baikalian area, Russia). Quat. Int. 2015, 355, 57-64
    • (2015) Quat. Int , vol.355 , pp. 57-64
    • Kolomiets, V.L.1    Budaev, R.T.2
  • 47
    • 85040643816 scopus 로고    scopus 로고
    • United Nations Environment Programme-World Conservation: Cambridge, UK
    • Hogan, C. Lake Baikal Basin, Russian Federation; United Nations Environment Programme-World Conservation: Cambridge, UK, 2015
    • (2015) Lake Baikal Basin, Russian Federation
    • Hogan, C.1
  • 50
    • 84920091192 scopus 로고    scopus 로고
    • Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach
    • Lane, C.; Liu, H.; Autrey, B.; Anenkhonov, O.; Chepinoga, V.; Wu, Q. Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 2014, 6, 12187-12216
    • (2014) Remote Sens , vol.6 , pp. 12187-12216
    • Lane, C.1    Liu, H.2    Autrey, B.3    Anenkhonov, O.4    Chepinoga, V.5    Wu, Q.6
  • 51
    • 0026480790 scopus 로고
    • Using spectral vegetation indices to estimate rangeland productivity
    • Richardson, A.J.; Everitt, J.H. Using spectral vegetation indices to estimate rangeland productivity. Geocarto Int. 1992, 7, 63-69
    • (1992) Geocarto Int , vol.7 , pp. 63-69
    • Richardson, A.J.1    Everitt, J.H.2
  • 52
    • 33644872035 scopus 로고    scopus 로고
    • Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns
    • Yang, C.; Everitt, J.; Bradford, J. Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns. Precis. Agric. 2006, 7, 33-44
    • (2006) Precis. Agric , vol.7 , pp. 33-44
    • Yang, C.1    Everitt, J.2    Bradford, J.3
  • 53
    • 2342565836 scopus 로고    scopus 로고
    • Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 vegetation data
    • Liu, G.-R.; Liang, C.-K.; Kuo, T.-H.; Lin, T.-H.; Huang, S.-J. Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 vegetation data. Terr. Atmos. Ocean. Sci. 2004, 15, 15
    • (2004) Terr. Atmos. Ocean. Sci , vol.15 , pp. 15
    • Liu, G.-R.1    Liang, C.-K.2    Kuo, T.-H.3    Lin, T.-H.4    Huang, S.-J.5
  • 54
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266
    • (1996) Remote Sens. Environ , vol.58 , pp. 257-266
    • Gao, B.1
  • 55
    • 58149186662 scopus 로고    scopus 로고
    • Region based segmentation of Quickbird multispectral imagery through bands ratios and fuzzy comparison
    • Wuest, B.; Zhang, Y. Region based segmentation of Quickbird multispectral imagery through bands ratios and fuzzy comparison. ISPRS J. Photogramm. Remote Sens. 2009, 64, 55-64
    • (2009) ISPRS J. Photogramm. Remote Sens , vol.64 , pp. 55-64
    • Wuest, B.1    Zhang, Y.2
  • 57
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A.;Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18-22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 58
    • 0027007203 scopus 로고
    • Derivation and applications of probabilistic measures of class membership from the maximum likelihood classification
    • Foody, G.M.; Campbell, N.A.; Trodd, N.M.; Wood, T.F. Derivation and applications of probabilistic measures of class membership from the maximum likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335-1341
    • (1992) Photogramm. Eng. Remote Sens , vol.58 , pp. 1335-1341
    • Foody, G.M.1    Campbell, N.A.2    Trodd, N.M.3    Wood, T.F.4
  • 59
    • 0029769688 scopus 로고    scopus 로고
    • Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data
    • Foody, G.M.; Palubinskas, G.; Lucas, R.M.; Curran, P.J.; Honzak, M. Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data. Remote Sens. Environ. 1996, 55, 205-216
    • (1996) Remote Sens. Environ , vol.55 , pp. 205-216
    • Foody, G.M.1    Palubinskas, G.2    Lucas, R.M.3    Curran, P.J.4    Honzak, M.5
  • 60
    • 84947969718 scopus 로고    scopus 로고
    • Object-based image analysis of optical and radar variables for wetland evaluation
    • Dingle Robertson, L.; King, D.J.; Davies, C. Object-based image analysis of optical and radar variables for wetland evaluation. Int. J. Remote Sens. 2015, 36, 5811-5841
    • (2015) Int. J. Remote Sens , vol.36 , pp. 5811-5841
    • Dingle Robertson, L.1    King, D.J.2    Davies, C.3
  • 61
    • 0032084126 scopus 로고    scopus 로고
    • Design and analysis for thematicmap accuracy assessment
    • Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematicmap accuracy assessment. Remote Sens. Environ. 1998, 64, 331-344
    • (1998) Remote Sens. Environ , vol.64 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 62
    • 0026278621 scopus 로고
    • A reviewof assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G. A reviewof assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35-46
    • (1991) Remote Sens. Environ , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 63
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153-157
    • (1947) Psychometrika , vol.12 , pp. 153-157
    • McNemar, Q.1
  • 64
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
    • Foody, G. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. 2009, 113, 1658-1663
    • (2009) Remote Sens , vol.113 , pp. 1658-1663
    • Foody, G.1
  • 65
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.; Franklin, S.; Dubé, M. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272
    • (2012) Remote Sens. Environ , vol.118 , pp. 259-272
    • Duro, D.1    Franklin, S.2    Dubé, M.3
  • 66
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A.M.; Iverswon, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181-199
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverswon, L.R.2    Liaw, A.3
  • 67
    • 39749162214 scopus 로고    scopus 로고
    • Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site
    • Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237-250
    • (2008) ISPRS J. Photogramm. Remote Sens , vol.63 , pp. 237-250
    • Mallinis, G.1    Koutsias, N.2    Tsakiri-Strati, M.3    Karteris, M.4
  • 68
    • 79957650754 scopus 로고    scopus 로고
    • Image segmentation scale parameter optimization and land cover classification using the random forest algorithm
    • Smith, A. Image segmentation scale parameter optimization and land cover classification using the random forest algorithm. J. Spat. Sci. 2010, 55, 69-79
    • (2010) J. Spat. Sci , vol.55 , pp. 69-79
    • Smith, A.1
  • 70
    • 84977926754 scopus 로고    scopus 로고
    • Multispectral image analysis using random forest
    • Lowe, B.; Kulkarni, A. Multispectral image analysis using random forest. Int. J. Soft Comput. 2015, 6, 1-14
    • (2015) Int. J. Soft Comput , vol.6 , pp. 1-14
    • Lowe, B.1    Kulkarni, A.2
  • 72
    • 33745104517 scopus 로고    scopus 로고
    • Mapping submergent aquatic vegetation in the US Great Lakes using Quickbird satellite data
    • Wolter, P.T.; Johnston, C.A.; Niemi, G.J. Mapping submergent aquatic vegetation in the US Great Lakes using Quickbird satellite data. Int. J. Remote Sens. 2005, 26, 5255-5274
    • (2005) Int. J. Remote Sens , vol.26 , pp. 5255-5274
    • Wolter, P.T.1    Johnston, C.A.2    Niemi, G.J.3
  • 73
    • 34547396995 scopus 로고    scopus 로고
    • Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie
    • Beeri, O.; Phillips, R.; Hendrickson, J.; Frank, A.B.; Kronberg, S. Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie. Remote Sens. Environ. 2007, 110, 216-225
    • (2007) Remote Sens. Environ , vol.110 , pp. 216-225
    • Beeri, O.1    Phillips, R.2    Hendrickson, J.3    Frank, A.B.4    Kronberg, S.5
  • 74
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156-168
    • (2016) Remote Sens. Environ , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 75
    • 79951944805 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-oriented approaches to VHR imagery for mapping saltmarsh plants
    • Ouyang, Z.; Zhang, M.; Xie, X.; Shen, Q.; Guo, H.; Zhao, B. A comparison of pixel-based and object-oriented approaches to VHR imagery for mapping saltmarsh plants. Ecol. Inform. 2011, 6, 136-146
    • (2011) Ecol. Inform , vol.6 , pp. 136-146
    • Ouyang, Z.1    Zhang, M.2    Xie, X.3    Shen, Q.4    Guo, H.5    Zhao, B.6
  • 76
    • 84873204284 scopus 로고    scopus 로고
    • Remote sensing in mapping mangrove ecosystem-An object-based approach
    • Vo, Q.; Oppelt, N.; Kuenzer, C. Remote sensing in mapping mangrove ecosystem-An object-based approach. Remote Sens. 2013, 5, 183-201
    • (2013) Remote Sens , vol.5 , pp. 183-201
    • Vo, Q.1    Oppelt, N.2    Kuenzer, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.