메뉴 건너뛰기




Volumn 2, Issue , 2017, Pages 510-517

Question answering through transfer learning from large fine-grained supervision data

Author keywords

[No Author keywords available]

Indexed keywords

LINGUISTICS;

EID: 85040569817     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/P17-2081     Document Type: Conference Paper
Times cited : (86)

References (36)
  • 1
    • 84904308637 scopus 로고    scopus 로고
    • Semantic parsing on freebase from question-answer pairs
    • Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In EMNLP.
    • (2013) EMNLP
    • Berant, J.1    Chou, A.2    Frostig, R.3    Liang, P.4
  • 2
    • 84959892771 scopus 로고    scopus 로고
    • A large annotated corpus for learning natural language inference
    • Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. 2015. A large annotated corpus for learning natural language inference. In EMNLP.
    • (2015) EMNLP
    • Bowman, S.R.1    Angeli, G.2    Potts, C.3    Manning, C.D.4
  • 3
    • 79957858945 scopus 로고    scopus 로고
    • Domain adaptation of rule-based annotators for named-entity recognition tasks
    • Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, and Shivakumar Vaithyanathan. 2010. Domain adaptation of rule-based annotators for named-entity recognition tasks. In EMNLP.
    • (2010) EMNLP
    • Chiticariu, L.1    Krishnamurthy, R.2    Li, Y.3    Reiss, F.4    Vaithyanathan, S.5
  • 5
    • 85029360826 scopus 로고    scopus 로고
    • Kelp at semeval-2016 task 3: Learning semantic relations between questions and answers
    • Simone Filice, Danilo Croce, Alessandro Moschitti, and Roberto Basili. 2016. Kelp at semeval-2016 task 3: Learning semantic relations between questions and answers. SemEval 16:1116–1123.
    • (2016) SemEval , vol.16 , pp. 1116-1123
    • Filice, S.1    Croce, D.2    Moschitti, A.3    Basili, R.4
  • 8
    • 84943783055 scopus 로고    scopus 로고
    • Unal-nlp: Combining soft cardinality features for semantic textual similarity, relatedness and entailment
    • Sergio Jimenez, George Duenas, Julia Baquero, Alexander Gelbukh, Av Juan Dios Bátiz, and Av Mendizábal. 2014. Unal-nlp: Combining soft cardinality features for semantic textual similarity, relatedness and entailment. In SemEval Workshop.
    • (2014) SemEval Workshop
    • Jimenez, S.1    Duenas, G.2    Baquero, J.3    Gelbukh, A.4    Dios Bátiz, A.J.5    Mendizábal, A.6
  • 9
    • 85029384654 scopus 로고    scopus 로고
    • Convkn at semeval-2016 task 3: Answer and question selection for question answering on Arabic and english fora
    • Shafiq Joty, Alessandro Moschitti, Fahad A Al Obaidli, Salvatore Romeo, Kateryna Tymoshenko, and Antonio Uva. 2016. Convkn at semeval-2016 task 3: Answer and question selection for question answering on Arabic and english fora. SemEval pages 896–903.
    • (2016) SemEval , pp. 896-903
    • Joty, S.1    Moschitti, A.2    Al Obaidli, F.A.3    Romeo, S.4    Tymoshenko, K.5    Uva, A.6
  • 10
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for generating image descriptions. In CVPR.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 12
    • 84943796531 scopus 로고    scopus 로고
    • Illinois-lh: A denotational and distributional approach to semantics
    • Alice Lai and Julia Hockenmaier. 2014. Illinois-lh: A denotational and distributional approach to semantics. SemEval .
    • (2014) SemEval .
    • Lai, A.1    Hockenmaier, J.2
  • 13
    • 84974839320 scopus 로고    scopus 로고
    • A sick cure for the evaluation of compositional distributional semantic models
    • Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto Zam-parelli. 2014. A sick cure for the evaluation of compositional distributional semantic models. In LREC.
    • (2014) LREC
    • Marelli, M.1    Menini, S.2    Baroni, M.3    Bentivogli, L.4    Bernardi, R.5    Zamparelli, R.6
  • 15
    • 85009273780 scopus 로고    scopus 로고
    • Semanticz at semeval-2016 task 3: Ranking relevant answers in community question answering using semantic similarity based on fine-tuned word embeddings
    • Todor Mihaylov and Preslav Nakov. 2016. Semanticz at semeval-2016 task 3: Ranking relevant answers in community question answering using semantic similarity based on fine-tuned word embeddings. SemEval pages 879–886.
    • (2016) SemEval , pp. 879-886
    • Mihaylov, T.1    Nakov, P.2
  • 16
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. In ICLR.
    • (2013) ICLR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 17
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In NIPS.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 19
    • 85072828340 scopus 로고    scopus 로고
    • How transferable are neural networks in nlp applications?
    • Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. 2016. How transferable are neural networks in nlp applications? In EMNLP.
    • (2016) EMNLP
    • Mou, L.1    Meng, Z.2    Yan, R.3    Li, G.4    Xu, Y.5    Zhang, L.6    Jin, Z.7
  • 22
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 23
    • 85071396128 scopus 로고    scopus 로고
    • Squad: 100,000+ questions for machine comprehension of text
    • Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In EMNLP.
    • (2016) EMNLP
    • Rajpurkar, P.1    Zhang, J.2    Lopyrev, K.3    Liang, P.4
  • 24
    • 85073246496 scopus 로고    scopus 로고
    • Bidirectional attention flow for machine comprehension
    • Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Bidirectional attention flow for machine comprehension. In ICLR.
    • (2017) ICLR
    • Seo, M.1    Kembhavi, A.2    Farhadi, A.3    Hajishirzi, H.4
  • 26
    • 84994158557 scopus 로고    scopus 로고
    • Convolutional neural networks vs. Convolution kernels: Feature engineering for answer sentence reranking
    • Kateryna Tymoshenko, Daniele Bonadiman, and Alessandro Moschitti. 2016. Convolutional neural networks vs. convolution kernels: Feature engineering for answer sentence reranking. In NAACL-HLT.
    • (2016) NAACL-HLT
    • Tymoshenko, K.1    Bonadiman, D.2    Moschitti, A.3
  • 27
    • 0033661290 scopus 로고    scopus 로고
    • Building a question answering test collection
    • Ellen M Voorhees and Dawn M Tice. 2000. Building a question answering test collection. In ACM SIGIR.
    • (2000) ACM SIGIR
    • Voorhees, E.M.1    Tice, D.M.2
  • 28
    • 85088224236 scopus 로고    scopus 로고
    • A compare-aggregate model for matching text sequences
    • Shuohang Wang and Jing Jiang. 2017a. A compare-aggregate model for matching text sequences. In ICLR.
    • (2017) ICLR
    • Wang, S.1    Jiang, J.2
  • 29
    • 85088230588 scopus 로고    scopus 로고
    • Machine comprehension using match-lstm and answer pointer
    • Shuohang Wang and Jing Jiang. 2017b. Machine comprehension using match-lstm and answer pointer. In ICLR.
    • (2017) ICLR
    • Wang, S.1    Jiang, J.2
  • 31
    • 85071127938 scopus 로고    scopus 로고
    • Dynamic coattention networks for question answering
    • Caiming Xiong, Victor Zhong, and Richard Socher. 2017. Dynamic coattention networks for question answering. In ICLR.
    • (2017) ICLR
    • Xiong, C.1    Zhong, V.2    Socher, R.3
  • 32
    • 84959887366 scopus 로고    scopus 로고
    • Wikiqa: A challenge dataset for open-domain question answering
    • Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. Wikiqa: A challenge dataset for open-domain question answering. In EMNLP.
    • (2015) EMNLP
    • Yang, Y.1    Yih, W.-T.2    Meek, C.3
  • 33
    • 85015342918 scopus 로고    scopus 로고
    • Abcnn: Attention-based convolutional neural network for modeling sentence pairs
    • Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. 2016. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. TACL .
    • (2016) TACL
    • Yin, W.1    Schütze, H.2    Xiang, B.3    Zhou, B.4
  • 35
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In ECCV.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 36
    • 85107064777 scopus 로고    scopus 로고
    • Ecnu: One stone two birds: Ensemble of heterogenous measures for semantic relatedness and textual entailment
    • Jiang Zhao, Tian Tian Zhu, and Man Lan. 2014. Ecnu: One stone two birds: Ensemble of heterogenous measures for semantic relatedness and textual entailment. SemEval pages 271–277.
    • (2014) SemEval , pp. 271-277
    • Zhao, J.1    Zhu, T.T.2    Lan, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.