-
1
-
-
0000949311
-
-
W. Ketterle and N.J. Druten, Adv. At., Mol., Opt. Phys. 37, 181 (1996), and references therein.
-
(1996)
Adv. At., Mol., Opt. Phys.
, vol.37
, pp. 181
-
-
Ketterle, W.1
Druten, N.J.2
-
3
-
-
85037236725
-
-
G-L. Oppo, IOP, Bristol
-
J. Walraven, Quantum Dynamics of Simple Systems, Proceedings of the (Formula presented)Scottish University Summer School in Physics, Stirling, 1996, edited by G-L. Oppo (IOP, Bristol, 1996).
-
(1996)
Quantum Dynamics of Simple Systems, Proceedings of the (Formula presented)Scottish University Summer School in Physics, Stirling, 1996
-
-
Walraven, J.1
-
4
-
-
11944274056
-
-
M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science 269, 198 (1995).
-
(1995)
Science
, vol.269
, pp. 198
-
-
Anderson, M.H.1
Ensher, J.R.2
Matthews, M.R.3
Wieman, C.E.4
Cornell, E.A.5
-
5
-
-
4243132347
-
-
C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995);
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1687
-
-
Bradley, C.C.1
Sackett, C.A.2
Tollett, J.J.3
Hulet, R.G.4
-
7
-
-
4244115335
-
-
K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3969
-
-
Davis, K.B.1
Mewes, M.-O.2
Andrews, M.R.3
van Druten, N.J.4
Durfee, D.S.5
Kurn, D.M.6
Ketterle, W.7
-
8
-
-
0000101533
-
-
B. Desruelle, V. Boyer, S.G. Murdoch, G. Delannoy, P. Bouyer, and A. Aspect, Phys. Rev. A 60, R1759 (1999).
-
(1999)
Phys. Rev. A
, vol.60
-
-
Desruelle, B.1
Boyer, V.2
Murdoch, S.G.3
Delannoy, G.4
Bouyer, P.5
Aspect, A.6
-
10
-
-
0003249849
-
-
J.J. Tollett, C.C. Bradley, C.A. Sackett, and R.G. Hulet, Phys. Rev. A 51, R22 (1995).
-
(1995)
Phys. Rev. A
, vol.51
-
-
Tollett, J.J.1
Bradley, C.C.2
Sackett, C.A.3
Hulet, R.G.4
-
11
-
-
0001639425
-
-
B. Desruelle, V. Boyer, P. Bouyer, G. Birkl, M. Lécrivain, F. Alves, C.I. Westbrook, and A. Aspect, Eur. Phys. J. D 1, 255 (1998).
-
(1998)
Eur. Phys. J. D
, vol.1
, pp. 255
-
-
Desruelle, B.1
Boyer, V.2
Bouyer, P.3
Birkl, G.4
Lécrivain, M.5
Alves, F.6
Westbrook, C.I.7
Aspect, A.8
-
12
-
-
0000653702
-
-
J. Stenger, S. Inouye, M.R. Andrews, H.-J. Miesner, D.M. Stamper-Kurn, and W. Ketterle, Phys. Rev. Lett. 82, 2422 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 2422
-
-
Stenger, J.1
Inouye, S.2
Andrews, M.R.3
Miesner, H.-J.4
Stamper-Kurn, D.M.5
Ketterle, W.6
-
13
-
-
0000730413
-
-
Vladan Vuletic, Andrew J. Kerman, Cheng Chin, and Steven Chu, Phys. Rev. Lett. 82, 1406 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 1406
-
-
Vuletic, V.1
Kerman, A.J.2
Chin, C.3
Chu, S.4
-
14
-
-
0032490466
-
-
Ph. Courteille, R.S. Freeland, D.J. Heinzen, F.A. van Abeelen, and B.J. Verhaar, Phys. Rev. Lett. 81, 69 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 69
-
-
Courteille, P.1
Freeland, R.S.2
Heinzen, D.J.3
van Abeelen, F.A.4
Verhaar, B.J.5
-
15
-
-
85037188448
-
-
S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, e-print physics/0004290.
-
-
-
Cornish, S.L.1
Claussen, N.R.2
Roberts, J.L.3
Cornell, E.A.4
Wieman, C.E.5
-
16
-
-
85037248708
-
-
Note, however, that in time-averaged orbiting potential traps the bias field often exceeds 10 G, and hindered cooling may play a role, specially when the atomic ground-state hyperfine splitting is relatively small, as in sodium, for example
-
Note, however, that in time-averaged orbiting potential traps the bias field often exceeds 10 G, and hindered cooling may play a role, specially when the atomic ground-state hyperfine splitting is relatively small, as in sodium, for example.
-
-
-
-
17
-
-
85037212956
-
-
P. Bouyer, V. Boyer, S.G. Murdoch, G. Delannoy, Y. Le Coq, A. Aspect, and M. Lecrivain, e-print physics/0003050.
-
-
-
Bouyer, P.1
Boyer, V.2
Murdoch, S.G.3
Delannoy, G.4
Le Coq, Y.5
Aspect, A.6
Lecrivain, M.7
-
18
-
-
85037231209
-
-
The (Formula presented) state is a trapping state in this manifold because of the nonlinearity of the Zeeman effect
-
The (Formula presented) state is a trapping state in this manifold because of the nonlinearity of the Zeeman effect.
-
-
-
-
19
-
-
85037208281
-
-
This conclusion was corroborated by a calculation of the energies of the dressed states for a given set (Formula presented) From the calculated energy splitting (Formula presented) at the (Formula presented) level crossing, we used the two-level Landau-Zener probability that the atoms will follow an adiabatic transition. We verified that for small Rabi frequencies (i.e., small evaporation efficiency), as in our experiment, this three-photon transition is the most probable transition at any sideband detuning (Formula presented) This numerical calculation can be used to fit the experimental data. We can estimate the one-photon Rabi frequency (Formula presented) kHz
-
This conclusion was corroborated by a calculation of the energies of the dressed states for a given set (Formula presented) From the calculated energy splitting (Formula presented) at the (Formula presented) level crossing, we used the two-level Landau-Zener probability that the atoms will follow an adiabatic transition. We verified that for small Rabi frequencies (i.e., small evaporation efficiency), as in our experiment, this three-photon transition is the most probable transition at any sideband detuning (Formula presented) This numerical calculation can be used to fit the experimental data. We can estimate the one-photon Rabi frequency (Formula presented) kHz.
-
-
-
-
20
-
-
0001434023
-
-
Except maybe for the case of destructive energy releasing collisions as in (Formula presented) See P.S. Julienne, F.H. Mies, E. Tiesinga, and C.J. Williams, Phys. Rev. Lett. 78, 1880 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1880
-
-
Julienne, P.S.1
Mies, F.H.2
Tiesinga, E.3
Williams, C.J.4
|