-
5
-
-
0000727092
-
-
K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).
-
(1998)
Phys. Rev. A
, vol.58
, pp. 883
-
-
Życzkowski, K.1
Horodecki, P.2
Sanpera, A.3
Lewenstein, M.4
-
8
-
-
4243216277
-
-
C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Phys. Rev. A 54, 3824 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3824
-
-
Bennett, C.H.1
DiVincenzo, D.P.2
Smolin, J.A.3
Wootters, W.K.4
-
9
-
-
4444269235
-
-
V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2275
-
-
Vedral, V.1
Plenio, M.B.2
Rippin, M.A.3
Knight, P.L.4
-
10
-
-
85037226629
-
-
P. Stelmachovic and V. Bužek (unpublished)
-
P. Stelmachovic and V. Bužek (unpublished).
-
-
-
-
12
-
-
0035471721
-
-
D. Gunlycke, V.M. Kendon, V. Vedral, and S. Bose, Phys. Rev. A 64, 042302 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 42302
-
-
Gunlycke, D.1
Kendon, V.M.2
Vedral, V.3
Bose, S.4
-
31
-
-
85037195055
-
-
P. Rungta, W.J. Munro, K. Nemoto, P. Deuar, G.J. Milburn, and C.M. Caves, in Directions in Quantum Optics A Collection of Papers Dedicated to the Memory of Dan Walls, edited by H.J. Carmichael, R.J. Glauber, and M.O. Scully (Springer-Verlag, Berlin, 2001), pp. 149–164
-
P. Rungta, W.J. Munro, K. Nemoto, P. Deuar, G.J. Milburn, and C.M. Caves, in Directions in Quantum Optics: A Collection of Papers Dedicated to the Memory of Dan Walls, edited by H.J. Carmichael, R.J. Glauber, and M.O. Scully (Springer-Verlag, Berlin, 2001), pp. 149–164.
-
-
-
-
34
-
-
85037181378
-
-
By “positive measure” we mean that we have divided the Hilbert space into two regions with measures of comparable size in (Formula presented) i.e., the ratio of the measures of the two parts is finite (neither infinite nor zero)
-
By “positive measure” we mean that we have divided the Hilbert space into two regions with measures of comparable size in (Formula presented) i.e., the ratio of the measures of the two parts is finite (neither infinite nor zero).
-
-
-
-
36
-
-
45849155349
-
-
W.J. Munro, D.F.V. James, A.G. White, and P.G. Kwiat, Phys. Rev. A 64, 030302 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 30302
-
-
Munro, W.J.1
James, D.F.V.2
White, A.G.3
Kwiat, P.G.4
-
38
-
-
0035395139
-
-
F. Verstraete, K. Audenaert, T.D. Bie, and B.D. Moor, Phys. Rev. A 64, 012316 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 12316
-
-
Verstraete, F.1
Audenaert, K.2
Bie, T.D.3
Moor, B.D.4
-
39
-
-
85037251022
-
-
For two qubits, (Formula presented) is at the boundary of the maximal ball (PPT implies separable in this case, see also Ref. 30), which is why the exact results for the bounds for two qubits are the same [right-hand side of Eqs. (8) and (13) are equal]. But this isn’t so for (Formula presented) or (Formula presented) hence we get a different value for the bound from this method, in general. The states in between are maximally entangled mixed states, see, Refs. 35. 3637
-
For two qubits, (Formula presented) is at the boundary of the maximal ball (PPT implies separable in this case, see also Ref. 30), which is why the exact results for the bounds for two qubits are the same [right-hand side of Eqs. (8) and (13) are equal]. But this isn’t so for (Formula presented) or (Formula presented) hence we get a different value for the bound from this method, in general. The states in between are maximally entangled mixed states, see, Refs. 353637.
-
-
-
-
40
-
-
85037255370
-
-
M.L. Mehta, Matrix Theory (Hindustan Publishing, Delhi, 1989)
-
M.L. Mehta, Matrix Theory (Hindustan Publishing, Delhi, 1989).
-
-
-
|