-
3
-
-
4243059985
-
-
C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 1895
-
-
Bennett, C.H.1
Brassard, G.2
Crépeau, C.3
Jozsa, R.4
Peres, A.5
Wootters, W.K.6
-
4
-
-
0000842757
-
-
S. Lloyd, Science 261, 1589 (1993)
-
(1993)
Science
, vol.261
, pp. 1589
-
-
Lloyd, S.1
-
5
-
-
0029388979
-
-
M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000)
-
ScienceD.P. DiVincenzo, 270, 255 (1995);M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
-
(1995)
Science
, vol.270
, pp. 255
-
-
DiVincenzo, D.P.1
-
6
-
-
4243216277
-
-
C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Phys. Rev. A 54, 3824 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3824
-
-
Bennett, C.H.1
DiVincenzo, D.P.2
Smolin, J.A.3
Wootters, W.K.4
-
8
-
-
4243789313
-
-
C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 722
-
-
Bennett, C.H.1
Brassard, G.2
Popescu, S.3
Schumacher, B.4
Smolin, J.5
Wootters, W.K.6
-
9
-
-
0001640624
-
-
V. Vedral, M.B. Plenio, K. Jacobs, and P.L. Knight, Phys. Rev. A 56, 4452 (1997).
-
(1997)
Phys. Rev. A
, vol.56
, pp. 4452
-
-
Vedral, V.1
Plenio, M.B.2
Jacobs, K.3
Knight, P.L.4
-
10
-
-
0000727092
-
-
K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).
-
(1998)
Phys. Rev. A
, vol.58
, pp. 883
-
-
Życzkowski, K.1
Horodecki, P.2
Sanpera, A.3
Lewenstein, M.4
-
12
-
-
85037211466
-
-
By entropy we mean a measure of how mixed a state is (i.e., its mixedness). We shall focus on two measures: the linear entropy and the von Neumann entropy, defined in Sec. III
-
By entropy we mean a measure of how mixed a state is (i.e., its mixedness). We shall focus on two measures: the linear entropy and the von Neumann entropy, defined in Sec. III.
-
-
-
-
13
-
-
45849155349
-
-
W.J. Munro, D.F.V. James, A.G. White, and P.G. Kwiat, Phys. Rev. A 64, 030302 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 30302
-
-
Munro, W.J.1
James, D.F.V.2
White, A.G.3
Kwiat, P.G.4
-
18
-
-
0035976826
-
-
F. Verstraete, K. Audenaert, J. Dehaene, and B. De Moor, J. Phys. A 34, 10 327 (2001).
-
(2001)
J. Phys. A
, vol.34
, pp. 10 327
-
-
Verstraete, F.1
Audenaert, K.2
Dehaene, J.3
De Moor, B.4
-
20
-
-
4444269235
-
-
V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2275
-
-
Vedral, V.1
Plenio, M.B.2
Rippin, M.A.3
Knight, P.L.4
-
23
-
-
85037208471
-
-
A separable (or unentangled) state (bipartite) (Formula presented) can be expressed as (Formula presented) whereas an entangled state has no such decomposition
-
A separable (or unentangled) state (bipartite) (Formula presented) can be expressed as (Formula presented) whereas an entangled state has no such decomposition.
-
-
-
-
26
-
-
85037230260
-
-
Suppose a bipartite density matrix (Formula presented) is expressed in the following form: (Formula presented) Then the partial transpose (Formula presented) of the density matrix (Formula presented) is defined via (Formula presented)We remark that the partial transpose depends on the basis chosen but the eigenvalues of the partially transposed matrix do not
-
Suppose a bipartite density matrix (Formula presented) is expressed in the following form: (Formula presented) Then the partial transpose (Formula presented) of the density matrix (Formula presented) is defined via (Formula presented)We remark that the partial transpose depends on the basis chosen but the eigenvalues of the partially transposed matrix do not.
-
-
-
-
28
-
-
85037221707
-
-
The main purpose for generating random states is to explore the boundary of the region, on the (Formula presented) versus (Formula presented) plane, of physically allowed states. The scheme by which we generate the eigenvalues of these states is, for the rank-4 case, as follows. We let (Formula presented) (Formula presented) (Formula presented) and (Formula presented) where (Formula presented) generates a random number in (Formula presented)
-
The main purpose for generating random states is to explore the boundary of the region, on the (Formula presented) versus (Formula presented) plane, of physically allowed states. The scheme by which we generate the eigenvalues of these states is, for the rank-4 case, as follows. We let (Formula presented) (Formula presented) (Formula presented) and (Formula presented) where (Formula presented) generates a random number in (Formula presented)
-
-
-
|