-
4
-
-
0004211204
-
-
J. Souletie, J. Vannimenus, R. Stora, North-Holland, Amsterdam
-
B. Souillard, in Chance and Matter, edited by J. Souletie, J. Vannimenus, and R. Stora (North-Holland, Amsterdam, 1987).
-
(1987)
Chance and Matter
-
-
Souillard, B.1
-
5
-
-
0004186193
-
-
W. van Haeringen, D. Lenstra, Kluwer, Dordrecht
-
Analogies in Optics and Micro Electronics, edited by W. van Haeringen and D. Lenstra (Kluwer, Dordrecht, 1990).
-
(1990)
Analogies in Optics and Micro Electronics
-
-
-
15
-
-
0038232848
-
-
Plenum, New York
-
See, e.g., S. A. Gredeskul, A. V. Marchenko, and L. A. Pastur, in Surveys in Applied Mathematics, edited by M. Freidlin (Plenum, New York, 1995), Vol. 2.
-
(1995)
Surveys in Applied Mathematics
, vol.2
-
-
Gredeskul, S.A.1
Marchenko, A.V.2
Pastur, L.A.3
-
16
-
-
26144433204
-
-
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
-
(1979)
Phys. Rev. Lett.
, vol.42
, pp. 673
-
-
Abrahams, E.1
Anderson, P.W.2
Licciardello, D.C.3
Ramakrishnan, T.V.4
-
18
-
-
84956132866
-
-
where some results of experiments with surface water waves on a rough bottom have been reported
-
As an example of 1D localization, see M. Belzons, P. Devillard, F. Dunlop, E. Guazzelli, O. Parodi, and B. Souillard, Europhys. Lett. 4, 909 (1987), where some results of experiments with surface water waves on a rough bottom have been reported.
-
(1987)
Europhys. Lett.
, vol.4
, pp. 909
-
-
Belzons, M.1
Devillard, P.2
Dunlop, F.3
Guazzelli, E.4
Parodi, O.5
Souillard, B.6
-
19
-
-
0003025578
-
-
where a microwave localization in a 2D system of dielectric rods was observed
-
See, e.g., R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, Nature (London) 354, 53 (1991), where a microwave localization in a 2D system of dielectric rods was observed.
-
(1991)
Nature (London)
, vol.354
, pp. 53
-
-
Dalichaouch, R.1
Armstrong, J.P.2
Schultz, S.3
Platzman, P.M.4
McCall, S.L.5
-
22
-
-
0031456977
-
-
D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature (London) 390, 671 (1997).
-
(1997)
Nature (London)
, vol.390
, pp. 671
-
-
Wiersma, D.S.1
Bartolini, P.2
Lagendijk, A.3
Righini, R.4
-
25
-
-
0004082960
-
-
C. M. Soukoulis, Plenum, New York
-
Photonic Band Gaps and Localization, edited by C. M. Soukoulis (Plenum, New York, 1993).
-
(1993)
Photonic Band Gaps and Localization
-
-
-
27
-
-
0004181784
-
-
C. M. Soukoulis, Kluwer, Dordrecht
-
Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer, Dordrecht, 1996).
-
(1996)
Photonic Band Gap Materials
-
-
-
28
-
-
0141746915
-
-
U. Frisch, C. Froeschle, J.-P. Scheidecker, and P.-L. Sulem, Phys. Rev. A 8, 1416 (1973).
-
(1973)
Phys. Rev. A
, vol.8
, pp. 1416
-
-
Frisch, U.1
Froeschle, C.2
Scheidecker, J.-P.3
Sulem, P.-L.4
-
33
-
-
0028442881
-
-
D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, Phys. Rev. Lett. 72, 4149 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 4149
-
-
Tsai, D.P.1
Kovacs, J.2
Wang, Z.3
Moskovits, M.4
Shalaev, V.M.5
Suh, J.S.6
Botet, R.7
-
34
-
-
5244300724
-
-
E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 3380
-
-
Yablonovitch, E.1
Gmitter, T.J.2
Meade, R.D.3
Rappe, A.M.4
Brommer, K.D.5
Joannopoulos, J.D.6
-
37
-
-
0003405106
-
-
Springer, Berlin
-
See, e.g., S. M. Rytov, V. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer, Berlin, 1988).
-
(1988)
Principles of Statistical Radiophysics
-
-
Rytov, S.M.1
Kravtsov, V.A.2
Tatarskii, V.I.3
-
38
-
-
0000613407
-
-
D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, Phys. Rev. Lett. 74, 4193 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4193
-
-
Wiersma, D.S.1
van Albada, M.P.2
van Tiggelen, B.A.3
Lagendijk, A.4
-
39
-
-
85036394157
-
-
The same technique, applied in Ref. 21 to the mean (coherent) field, leads to the result coinciding exactly with that given by the Bourret approximation for the Dyson equation. This can be understood as an indirect confirmation of the fact that, unlike coherence function, the behavior of the mean field is less dependent on the backscattering effects even in the localization regime
-
The same technique, applied in Ref. 21 to the mean (coherent) field, leads to the result coinciding exactly with that given by the Bourret approximation for the Dyson equation. This can be understood as an indirect confirmation of the fact that, unlike coherence function, the behavior of the mean field is less dependent on the backscattering effects even in the localization regime.
-
-
-
-
40
-
-
85036185504
-
-
The complete form of the path integral, along with a description of the integration procedure, is presented in Refs. 21 and 22. Note that in these papers, the factor (Formula presented) in the exponential is erroneously missed, and the corresponding final result, representing the second (linear, with respect to the correlation function) term in a perturbative expansion, has to be taken with appropriate correction
-
The complete form of the path integral, along with a description of the integration procedure, is presented in Refs. 21 and 22. Note that in these papers, the factor (Formula presented) in the exponential is erroneously missed, and the corresponding final result, representing the second (linear, with respect to the correlation function) term in a perturbative expansion, has to be taken with appropriate correction.
-
-
-
-
41
-
-
85036407260
-
-
M. M. Sigalas, C. T. Chan, and C. M. Soukoulis, in Wave Propagation in Complex Media, edited by G. Papanicolaou (Springer, New York, 1998). In this work, however, the effect of the high-frequency localization length saturation is supposed to be related to the discontinuous character of the permittivity distribution, rather than being of universal nature
-
M. M. Sigalas, C. T. Chan, and C. M. Soukoulis, in Wave Propagation in Complex Media, edited by G. Papanicolaou (Springer, New York, 1998). In this work, however, the effect of the high-frequency localization length saturation is supposed to be related to the discontinuous character of the permittivity distribution, rather than being of universal nature.
-
-
-
|