-
1
-
-
84950314815
-
Statistical considerations on subgroup analysis in clinical trials
-
Alosh, M., Fritsch, F., Huque, M., Mahjoob, K., Pennello, G., Rothmann, R., Russek-Cohen, E., Smith, F., Wilson, S., Yue, L., (2015). Statistical considerations on subgroup analysis in clinical trials. Statistics in Biopharmaceutical Research 7:286–303.
-
(2015)
Statistics in Biopharmaceutical Research
, vol.7
, pp. 286-303
-
-
Alosh, M.1
Fritsch, F.2
Huque, M.3
Mahjoob, K.4
Pennello, G.5
Rothmann, R.6
Russek-Cohen, E.7
Smith, F.8
Wilson, S.9
Yue, L.10
-
2
-
-
0034799451
-
Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives
-
Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., Davey, S. G.
-
Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., Davey, S. G. (2001). Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives. Health Technology Assessment. 5:1–56.]
-
(2001)
Health Technology Assessment
, vol.5
, pp. 1-56
-
-
-
3
-
-
0034668136
-
A graphical method to assess treatmentÐcovariate interactions using the Cox model on subsets of the data
-
Bonetti, M., Gelber, R. D., (2000). A graphical method to assess treatmentÐcovariate interactions using the Cox model on subsets of the data. Statistics in Medicine 19:2595–2609.
-
(2000)
Statistics in Medicine
, vol.19
, pp. 2595-2609
-
-
Bonetti, M.1
Gelber, R.D.2
-
4
-
-
20044377408
-
Patterns of treatment effects in subsets of patients in clinical trials
-
Bonetti, M., Gelber, R. D., (2004). Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics 5:465–481.
-
(2004)
Biostatistics
, vol.5
, pp. 465-481
-
-
Bonetti, M.1
Gelber, R.D.2
-
5
-
-
84891759350
-
A Bayesian approach to subgroup identification
-
Berger, J., Wang, X., Shen, L., (2014). A Bayesian approach to subgroup identification. Journal of Biopharmaceutical Statistics 24:110–129.
-
(2014)
Journal of Biopharmaceutical Statistics
, vol.24
, pp. 110-129
-
-
Berger, J.1
Wang, X.2
Shen, L.3
-
6
-
-
85006707419
-
Model averaging for treatment effect estimation in subgroups
-
16:133–142
-
Bornkamp, B., Ohlssen, D., Magnusson, B., Schmidli, H., (2017). Model averaging for treatment effect estimation in subgroups. Pharmaceutical Statistics 16:133–142.
-
(2017)
Pharmaceutical Statistics
-
-
Bornkamp, B.1
Ohlssen, D.2
Magnusson, B.3
Schmidli, H.4
-
7
-
-
84911962987
-
Multiplicity and replicability: Two sides of the same coin
-
Bretz, F., Westfall, P. H., (2014). Multiplicity and replicability: Two sides of the same coin. Pharmaceutical Statistics 13:343–344.
-
(2014)
Pharmaceutical Statistics
, vol.13
, pp. 343-344
-
-
Bretz, F.1
Westfall, P.H.2
-
8
-
-
0034799451
-
Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives
-
Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., Davey, S. G., (2001). Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives. Health Technology Assessment 5:1–56.
-
(2001)
Health Technology Assessment
, vol.5
, pp. 1-56
-
-
Brookes, S.T.1
Whitley, E.2
Peters, T.J.3
Mulheran, P.A.4
Egger, M.5
Davey, S.G.6
-
9
-
-
84887241280
-
Tutorial in Biostatistics: Traditional multiplicity adjustment methods in clinical trials
-
Dmitrienko, A., D’Agostino, R. B., (2013). Tutorial in Biostatistics: Traditional multiplicity adjustment methods in clinical trials. Statistics in Medicine 32:5172–5218.
-
(2013)
Statistics in Medicine
, vol.32
, pp. 5172-5218
-
-
Dmitrienko, A.1
D’Agostino, R.B.2
-
10
-
-
84999887617
-
Biomarker evaluation and subgroup identification in a pneumonia development program using SIDES
-
Chen Z., Liu A., Qu Y., Tang L., Ting N., Tsong Y., (eds), New York: Springer,. In, (editors
-
Dmitrienko, A., Lipkovich, I., Hopkins, A., Li, Y. P., Wang, W., (2015). Biomarker evaluation and subgroup identification in a pneumonia development program using SIDES. In Z., Chen, A., Liu, Y., Qu, L., Tang, N., Ting, Y., Tsong (editors.), Applied Statistics in Biomedicine and Clinical Trials Design. New York: Springer.
-
(2015)
Applied Statistics in Biomedicine and Clinical Trials Design
-
-
Dmitrienko, A.1
Lipkovich, I.2
Hopkins, A.3
Li, Y.P.4
Wang, W.5
-
11
-
-
84955245549
-
General guidance on exploratory and confirmatory subgroup analysis in late-stage clinical trials
-
Dmitrienko, A., Muysers, C., Fritsch, A., Lipkovich, I., (2016). General guidance on exploratory and confirmatory subgroup analysis in late-stage clinical trials. Journal of Biopharmaceutical Statistics 26:71–98.
-
(2016)
Journal of Biopharmaceutical Statistics
, vol.26
, pp. 71-98
-
-
Dmitrienko, A.1
Muysers, C.2
Fritsch, A.3
Lipkovich, I.4
-
12
-
-
85026539300
-
Multiplicity considerations in subgroup analysis
-
[Epub ahead of print
-
Dmitrienko, A., Millen, B., Lipkovich, I., (2017). Multiplicity considerations in subgroup analysis. Statistics in Medicine. doi: 10.1002/sim.7416. [Epub ahead of print].
-
(2017)
Statistics in Medicine
-
-
Dmitrienko, A.1
Millen, B.2
Lipkovich, I.3
-
13
-
-
38949198791
-
Size, power and false discovery rates
-
Efron, B., (2007). Size, power and false discovery rates. The Annals of Statistics 35:1351–1377.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 1351-1377
-
-
Efron, B.1
-
17
-
-
79958773472
-
A flexible genome-wide bootstrap method that accounts for ranking and threshold-selection bias in GWAS interpretation and replication study design
-
Faye, L. L., Sun, L., Dimitromanolakis, A., Bulla, S. B., (2011). A flexible genome-wide bootstrap method that accounts for ranking and threshold-selection bias in GWAS interpretation and replication study design. Statistics in Medicine 30:1898–1912.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 1898-1912
-
-
Faye, L.L.1
Sun, L.2
Dimitromanolakis, A.3
Bulla, S.B.4
-
20
-
-
84871083518
-
Empirical Bayes correction for the Winner’s Curse in genetic association studies
-
Ferguson, J. P., Cho, J. H., Yang, C., Zhao, H., (2013). Empirical Bayes correction for the Winner’s Curse in genetic association studies. Genetic Epidemiology 37:60–68.
-
(2013)
Genetic Epidemiology
, vol.37
, pp. 60-68
-
-
Ferguson, J.P.1
Cho, J.H.2
Yang, C.3
Zhao, H.4
-
21
-
-
80053563163
-
Subgroup identification from randomized clinical trial data
-
Foster, J. C., Taylor, J. M. C., Ruberg, S. J., (2011). Subgroup identification from randomized clinical trial data. Statistics in Medicine 30:2867–2880.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 2867-2880
-
-
Foster, J.C.1
Taylor, J.M.C.2
Ruberg, S.J.3
-
22
-
-
84977634231
-
Estimating optimal treatment regimes via subgroup identification in randomized control trials and observational studies
-
Fu, H., Zhou, J., Faries, D. E., (2016). Estimating optimal treatment regimes via subgroup identification in randomized control trials and observational studies. Statistics in Medicine 35:3285–3302.
-
(2016)
Statistics in Medicine
, vol.35
, pp. 3285-3302
-
-
Fu, H.1
Zhou, J.2
Faries, D.E.3
-
23
-
-
84956572956
-
Sequential selection procedures and false discovery rate control
-
G’Sell, M. G., Wager, S., Chouldechova, A., Tibshirani, R., (2016). Sequential selection procedures and false discovery rate control. Journal of the Royal Statistical Society. Series B. 78:423–444.
-
(2016)
Journal of the Royal Statistical Society. Series B.
, vol.78
, pp. 423-444
-
-
G’Sell, M.G.1
Wager, S.2
Chouldechova, A.3
Tibshirani, R.4
-
24
-
-
84862908630
-
Variable selection for qualitative interactions in personalized medicine while controlling the familywise error rate
-
Gunter, L., Zhu, J., Murphy, S., (2011). Variable selection for qualitative interactions in personalized medicine while controlling the familywise error rate. Journal of Biopharmaceutical Statistics 21:1063–1078.
-
(2011)
Journal of Biopharmaceutical Statistics
, vol.21
, pp. 1063-1078
-
-
Gunter, L.1
Zhu, J.2
Murphy, S.3
-
25
-
-
84919846103
-
Identifying optimal biomarker combinations for treatment selection via a robust kernel method
-
Huang, Y., Fong, Y., (2014). Identifying optimal biomarker combinations for treatment selection via a robust kernel method. Biometrics 70:891–901.
-
(2014)
Biometrics
, vol.70
, pp. 891-901
-
-
Huang, Y.1
Fong, Y.2
-
26
-
-
84876042107
-
Estimating treatment effect heterogeneity in randomized program evaluation
-
Imai, K., Ratkovic, M., (2013). Estimating treatment effect heterogeneity in randomized program evaluation. The Annals of Applied Statistics 7:443–470.
-
(2013)
The Annals of Applied Statistics
, vol.7
, pp. 443-470
-
-
Imai, K.1
Ratkovic, M.2
-
27
-
-
79959271989
-
Bayesian models for subgroup analysis in clinical trials
-
Jones, H. E., Ohlssen, D. I., Neuenschwander, B., Racine, A., Branson, M., (2011). Bayesian models for subgroup analysis in clinical trials. Clinical Trials 8:129–143.
-
(2011)
Clinical Trials
, vol.8
, pp. 129-143
-
-
Jones, H.E.1
Ohlssen, D.I.2
Neuenschwander, B.3
Racine, A.4
Branson, M.5
-
28
-
-
84927690481
-
Combining biomarkers to optimize patient treatment recommendations
-
Kang, C., Janes, H., Huang, Y., (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70:695–707.
-
(2014)
Biometrics
, vol.70
, pp. 695-707
-
-
Kang, C.1
Janes, H.2
Huang, Y.3
-
29
-
-
80051894060
-
Subgroup identification based on differential effect search (SIDES): A recursive partitioning method for establishing response to treatment in patient subpopulations
-
Lipkovich, I., Dmitrienko, A., Denne, J., Enas, G., (2011). Subgroup identification based on differential effect search (SIDES): A recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine 30:2601–2621.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 2601-2621
-
-
Lipkovich, I.1
Dmitrienko, A.2
Denne, J.3
Enas, G.4
-
30
-
-
84891758815
-
Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES
-
Lipkovich, I., Dmitrienko, A., (2014a). Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES. Journal of Biopharmaceutical Statistics 24:130–153.
-
(2014)
Journal of Biopharmaceutical Statistics
, vol.24
, pp. 130-153
-
-
Lipkovich, I.1
Dmitrienko, A.2
-
31
-
-
84955306139
-
Biomarker identification in clinical trials
-
Carini C., Menon S., Chang M., (eds), New York: Chapman and Hall/CRC Press,. In, (editors
-
Lipkovich, I., Dmitrienko, A., (2014b). Biomarker identification in clinical trials. In C., Carini, S., Menon, M., Chang (editors.), Clinical and Statistical Considerations in Personalized Medicine. New York: Chapman and Hall/CRC Press.
-
(2014)
Clinical and Statistical Considerations in Personalized Medicine
-
-
Lipkovich, I.1
Dmitrienko, A.2
-
32
-
-
84980343984
-
Tutorial in Biostatistics: Data-driven subgroup identification and analysis in clinical trials
-
Lipkovich, I., Dmitrienko, A., D’Agostino, R. B., (2017). Tutorial in Biostatistics: Data-driven subgroup identification and analysis in clinical trials. Statistics in Medicine 36:136–196.
-
(2017)
Statistics in Medicine
, vol.36
, pp. 136-196
-
-
Lipkovich, I.1
Dmitrienko, A.2
D’Agostino, R.B.3
-
33
-
-
84901725294
-
A significance test for the lasso
-
Lockhart, R., Taylor, J., Tibshirani, R. J., Tibshirani, R., (2014). A significance test for the lasso. The Annals of Statistics 42:413–463.
-
(2014)
The Annals of Statistics
, vol.42
, pp. 413-463
-
-
Lockhart, R.1
Taylor, J.2
Tibshirani, R.J.3
Tibshirani, R.4
-
34
-
-
84926513964
-
A regression tree approach to identifying subgroups with differential treatment effects
-
Loh, W. Y., He, X., Man, M., (2015). A regression tree approach to identifying subgroups with differential treatment effects. Statistics in Medicine 34:1818–1833.
-
(2015)
Statistics in Medicine
, vol.34
, pp. 1818-1833
-
-
Loh, W.Y.1
He, X.2
Man, M.3
-
35
-
-
84991503912
-
Identification of subgroups with differential treatment effects for longitudinal and multiresponse variables
-
Loh, W.-Y., Fu, H., Man, M., Champion, V., Yu, M., (2016). Identification of subgroups with differential treatment effects for longitudinal and multiresponse variables. Statistics in Medicine 35:4837–4855.
-
(2016)
Statistics in Medicine
, vol.35
, pp. 4837-4855
-
-
Loh, W.-Y.1
Fu, H.2
Man, M.3
Champion, V.4
Yu, M.5
-
36
-
-
0031312210
-
Split selection methods for classification trees
-
Loh, W.Y., Shih,Y.S
-
Loh, W.Y., Shih,Y.S. (1997). Split selection methods for classification trees. Statistica Sinica 7:815–840.
-
(1997)
Statistica Sinica
, vol.7
, pp. 815-840
-
-
-
37
-
-
84950315593
-
Survey results on industry practices and challenges in subgroup analysis in clinical trials
-
Mayer, C., Lipkovich, I., Dmitrienko, A., (2015). Survey results on industry practices and challenges in subgroup analysis in clinical trials. Statistics in Biopharmaceutical Research 7:272—282.
-
(2015)
Statistics in Biopharmaceutical Research
, vol.7
, pp. 272-282
-
-
Mayer, C.1
Lipkovich, I.2
Dmitrienko, A.3
-
38
-
-
74049114503
-
P-values for high-dimensional regression
-
Meinshausen, N., Meier, L., Bühlmann, P., (2009). P-values for high-dimensional regression. Journal of the American Statistical Association 104:1671–1681.
-
(2009)
Journal of the American Statistical Association
, vol.104
, pp. 1671-1681
-
-
Meinshausen, N.1
Meier, L.2
Bühlmann, P.3
-
39
-
-
84955256935
-
Methods for identification and confirmation of targeted subgroups in clinical trials: A systematic review
-
Ondra, T., Dmitrienko, A., Friede, T., Graf, A., Miller, F., Stallard, N., Posch, M., (2016). Methods for identification and confirmation of targeted subgroups in clinical trials: A systematic review. Journal of Biopharmaceutical Statistics 26:99–119.
-
(2016)
Journal of Biopharmaceutical Statistics
, vol.26
, pp. 99-119
-
-
Ondra, T.1
Dmitrienko, A.2
Friede, T.3
Graf, A.4
Miller, F.5
Stallard, N.6
Posch, M.7
-
40
-
-
11844302840
-
Subgroup analysis in randomized controlled trials: Importance, indications, and interpretation
-
Rothwell, P. M., (2005). Subgroup analysis in randomized controlled trials: Importance, indications, and interpretation. Lancet 365:176–186.
-
(2005)
Lancet
, vol.365
, pp. 176-186
-
-
Rothwell, P.M.1
-
41
-
-
4344621625
-
A new approach to modelling interaction between treatment and continuous covariates in clinical trials by using fractional polynomials
-
Royston, P., Sauerbrei, W., (2004). A new approach to modelling interaction between treatment and continuous covariates in clinical trials by using fractional polynomials. Statistics in Medicine 23:2509–2525.
-
(2004)
Statistics in Medicine
, vol.23
, pp. 2509-2525
-
-
Royston, P.1
Sauerbrei, W.2
-
42
-
-
84884182515
-
Interaction of treatment with a continuous variable: Simulation study of power for several methods of analysis
-
Royston, P., Sauerbrei, W., (2013). Interaction of treatment with a continuous variable: Simulation study of power for several methods of analysis. Statistics in Medicine 32:3788–3803.
-
(2013)
Statistics in Medicine
, vol.32
, pp. 3788-3803
-
-
Royston, P.1
Sauerbrei, W.2
-
43
-
-
84984981992
-
Exploratory subgroup analysis in clinical trials by model selection
-
Rosenkranz, G. K., (2016). Exploratory subgroup analysis in clinical trials by model selection. Biometrical Journal 58:1217–1228.
-
(2016)
Biometrical Journal
, vol.58
, pp. 1217-1228
-
-
Rosenkranz, G.K.1
-
44
-
-
84975231609
-
Model-based recursive partitioning for subgroup analyses
-
Seibold, H., Zeileis, A., Hothorn, T., (2016). Model-based recursive partitioning for subgroup analyses. International Journal of Biostatistics 12:45–63.
-
(2016)
International Journal of Biostatistics
, vol.12
, pp. 45-63
-
-
Seibold, H.1
Zeileis, A.2
Hothorn, T.3
-
45
-
-
79955762500
-
Using cross validation to evaluate the predictive accuracy of survival risk classifiers based on high dimensional data
-
12
-
Simon, R. M., Subramanian, J., Li, M. C., Menezes, S., (2011). Using cross validation to evaluate the predictive accuracy of survival risk classifiers based on high dimensional data. Briefings in Bioinformatics 12:203–214.
-
(2011)
Briefings in Bioinformatics
, pp. 203-214
-
-
Simon, R.M.1
Subramanian, J.2
Li, M.C.3
Menezes, S.4
-
46
-
-
77951082212
-
Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses
-
Sun, X., Briel, M., Walter, S. D., Guyatt, G. H., (2010). Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. British Medical Journal 340:850–854.
-
(2010)
British Medical Journal
, vol.340
, pp. 850-854
-
-
Sun, X.1
Briel, M.2
Walter, S.D.3
Guyatt, G.H.4
-
47
-
-
84879843112
-
A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research
-
Varadhan, R., Segal, J. B., Boyd, C. M., Wu, A. W., Weiss, C. O., (2013). A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research. Journal of Clinical Epidemiology 66:818–825.
-
(2013)
Journal of Clinical Epidemiology
, vol.66
, pp. 818-825
-
-
Varadhan, R.1
Segal, J.B.2
Boyd, C.M.3
Wu, A.W.4
Weiss, C.O.5
-
48
-
-
84888130933
-
A regulatory perspective on essential considerations in design and analysis of subgroups correctly classified
-
Wang, S. J., Hung, H. M. J., (2014). A regulatory perspective on essential considerations in design and analysis of subgroups correctly classified. Journal of Biopharmaceutical Statistics 24:19–41.
-
(2014)
Journal of Biopharmaceutical Statistics
, vol.24
, pp. 19-41
-
-
Wang, S.J.1
Hung, H.M.J.2
-
49
-
-
84870657864
-
Estimating individualized treatment rules using outcome weighted learning
-
Zhao, Y., Zheng, D., Rush, A. J., Kosorok, M. R., (2012). Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association 107:1106–1118.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 1106-1118
-
-
Zhao, Y.1
Zheng, D.2
Rush, A.J.3
Kosorok, M.R.4
|