메뉴 건너뛰기




Volumn 28, Issue 1, 2018, Pages 63-81

Multiplicity issues in exploratory subgroup analysis

Author keywords

Clinical trials; multiple testing; predictive biomarkers; subgroup identification

Indexed keywords

BIOLOGICAL MARKER;

EID: 85035129830     PISSN: 10543406     EISSN: 15205711     Source Type: Journal    
DOI: 10.1080/10543406.2017.1397009     Document Type: Article
Times cited : (15)

References (49)
  • 2
    • 0034799451 scopus 로고    scopus 로고
    • Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives
    • Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., Davey, S. G.
    • Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., Davey, S. G. (2001). Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives. Health Technology Assessment. 5:1–56.]
    • (2001) Health Technology Assessment , vol.5 , pp. 1-56
  • 3
    • 0034668136 scopus 로고    scopus 로고
    • A graphical method to assess treatmentÐcovariate interactions using the Cox model on subsets of the data
    • Bonetti, M., Gelber, R. D., (2000). A graphical method to assess treatmentÐcovariate interactions using the Cox model on subsets of the data. Statistics in Medicine 19:2595–2609.
    • (2000) Statistics in Medicine , vol.19 , pp. 2595-2609
    • Bonetti, M.1    Gelber, R.D.2
  • 4
    • 20044377408 scopus 로고    scopus 로고
    • Patterns of treatment effects in subsets of patients in clinical trials
    • Bonetti, M., Gelber, R. D., (2004). Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics 5:465–481.
    • (2004) Biostatistics , vol.5 , pp. 465-481
    • Bonetti, M.1    Gelber, R.D.2
  • 7
    • 84911962987 scopus 로고    scopus 로고
    • Multiplicity and replicability: Two sides of the same coin
    • Bretz, F., Westfall, P. H., (2014). Multiplicity and replicability: Two sides of the same coin. Pharmaceutical Statistics 13:343–344.
    • (2014) Pharmaceutical Statistics , vol.13 , pp. 343-344
    • Bretz, F.1    Westfall, P.H.2
  • 8
    • 0034799451 scopus 로고    scopus 로고
    • Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives
    • Brookes, S. T., Whitley, E., Peters, T. J., Mulheran, P. A., Egger, M., Davey, S. G., (2001). Subgroup analyses in randomised controlled trials: Quantifying the risks of false-positives and false-negatives. Health Technology Assessment 5:1–56.
    • (2001) Health Technology Assessment , vol.5 , pp. 1-56
    • Brookes, S.T.1    Whitley, E.2    Peters, T.J.3    Mulheran, P.A.4    Egger, M.5    Davey, S.G.6
  • 9
    • 84887241280 scopus 로고    scopus 로고
    • Tutorial in Biostatistics: Traditional multiplicity adjustment methods in clinical trials
    • Dmitrienko, A., D’Agostino, R. B., (2013). Tutorial in Biostatistics: Traditional multiplicity adjustment methods in clinical trials. Statistics in Medicine 32:5172–5218.
    • (2013) Statistics in Medicine , vol.32 , pp. 5172-5218
    • Dmitrienko, A.1    D’Agostino, R.B.2
  • 10
    • 84999887617 scopus 로고    scopus 로고
    • Biomarker evaluation and subgroup identification in a pneumonia development program using SIDES
    • Chen Z., Liu A., Qu Y., Tang L., Ting N., Tsong Y., (eds), New York: Springer,. In, (editors
    • Dmitrienko, A., Lipkovich, I., Hopkins, A., Li, Y. P., Wang, W., (2015). Biomarker evaluation and subgroup identification in a pneumonia development program using SIDES. In Z., Chen, A., Liu, Y., Qu, L., Tang, N., Ting, Y., Tsong (editors.), Applied Statistics in Biomedicine and Clinical Trials Design. New York: Springer.
    • (2015) Applied Statistics in Biomedicine and Clinical Trials Design
    • Dmitrienko, A.1    Lipkovich, I.2    Hopkins, A.3    Li, Y.P.4    Wang, W.5
  • 11
    • 84955245549 scopus 로고    scopus 로고
    • General guidance on exploratory and confirmatory subgroup analysis in late-stage clinical trials
    • Dmitrienko, A., Muysers, C., Fritsch, A., Lipkovich, I., (2016). General guidance on exploratory and confirmatory subgroup analysis in late-stage clinical trials. Journal of Biopharmaceutical Statistics 26:71–98.
    • (2016) Journal of Biopharmaceutical Statistics , vol.26 , pp. 71-98
    • Dmitrienko, A.1    Muysers, C.2    Fritsch, A.3    Lipkovich, I.4
  • 12
    • 85026539300 scopus 로고    scopus 로고
    • Multiplicity considerations in subgroup analysis
    • [Epub ahead of print
    • Dmitrienko, A., Millen, B., Lipkovich, I., (2017). Multiplicity considerations in subgroup analysis. Statistics in Medicine. doi: 10.1002/sim.7416. [Epub ahead of print].
    • (2017) Statistics in Medicine
    • Dmitrienko, A.1    Millen, B.2    Lipkovich, I.3
  • 13
    • 38949198791 scopus 로고    scopus 로고
    • Size, power and false discovery rates
    • Efron, B., (2007). Size, power and false discovery rates. The Annals of Statistics 35:1351–1377.
    • (2007) The Annals of Statistics , vol.35 , pp. 1351-1377
    • Efron, B.1
  • 17
    • 79958773472 scopus 로고    scopus 로고
    • A flexible genome-wide bootstrap method that accounts for ranking and threshold-selection bias in GWAS interpretation and replication study design
    • Faye, L. L., Sun, L., Dimitromanolakis, A., Bulla, S. B., (2011). A flexible genome-wide bootstrap method that accounts for ranking and threshold-selection bias in GWAS interpretation and replication study design. Statistics in Medicine 30:1898–1912.
    • (2011) Statistics in Medicine , vol.30 , pp. 1898-1912
    • Faye, L.L.1    Sun, L.2    Dimitromanolakis, A.3    Bulla, S.B.4
  • 20
    • 84871083518 scopus 로고    scopus 로고
    • Empirical Bayes correction for the Winner’s Curse in genetic association studies
    • Ferguson, J. P., Cho, J. H., Yang, C., Zhao, H., (2013). Empirical Bayes correction for the Winner’s Curse in genetic association studies. Genetic Epidemiology 37:60–68.
    • (2013) Genetic Epidemiology , vol.37 , pp. 60-68
    • Ferguson, J.P.1    Cho, J.H.2    Yang, C.3    Zhao, H.4
  • 21
    • 80053563163 scopus 로고    scopus 로고
    • Subgroup identification from randomized clinical trial data
    • Foster, J. C., Taylor, J. M. C., Ruberg, S. J., (2011). Subgroup identification from randomized clinical trial data. Statistics in Medicine 30:2867–2880.
    • (2011) Statistics in Medicine , vol.30 , pp. 2867-2880
    • Foster, J.C.1    Taylor, J.M.C.2    Ruberg, S.J.3
  • 22
    • 84977634231 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes via subgroup identification in randomized control trials and observational studies
    • Fu, H., Zhou, J., Faries, D. E., (2016). Estimating optimal treatment regimes via subgroup identification in randomized control trials and observational studies. Statistics in Medicine 35:3285–3302.
    • (2016) Statistics in Medicine , vol.35 , pp. 3285-3302
    • Fu, H.1    Zhou, J.2    Faries, D.E.3
  • 24
    • 84862908630 scopus 로고    scopus 로고
    • Variable selection for qualitative interactions in personalized medicine while controlling the familywise error rate
    • Gunter, L., Zhu, J., Murphy, S., (2011). Variable selection for qualitative interactions in personalized medicine while controlling the familywise error rate. Journal of Biopharmaceutical Statistics 21:1063–1078.
    • (2011) Journal of Biopharmaceutical Statistics , vol.21 , pp. 1063-1078
    • Gunter, L.1    Zhu, J.2    Murphy, S.3
  • 25
    • 84919846103 scopus 로고    scopus 로고
    • Identifying optimal biomarker combinations for treatment selection via a robust kernel method
    • Huang, Y., Fong, Y., (2014). Identifying optimal biomarker combinations for treatment selection via a robust kernel method. Biometrics 70:891–901.
    • (2014) Biometrics , vol.70 , pp. 891-901
    • Huang, Y.1    Fong, Y.2
  • 26
    • 84876042107 scopus 로고    scopus 로고
    • Estimating treatment effect heterogeneity in randomized program evaluation
    • Imai, K., Ratkovic, M., (2013). Estimating treatment effect heterogeneity in randomized program evaluation. The Annals of Applied Statistics 7:443–470.
    • (2013) The Annals of Applied Statistics , vol.7 , pp. 443-470
    • Imai, K.1    Ratkovic, M.2
  • 28
    • 84927690481 scopus 로고    scopus 로고
    • Combining biomarkers to optimize patient treatment recommendations
    • Kang, C., Janes, H., Huang, Y., (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70:695–707.
    • (2014) Biometrics , vol.70 , pp. 695-707
    • Kang, C.1    Janes, H.2    Huang, Y.3
  • 29
    • 80051894060 scopus 로고    scopus 로고
    • Subgroup identification based on differential effect search (SIDES): A recursive partitioning method for establishing response to treatment in patient subpopulations
    • Lipkovich, I., Dmitrienko, A., Denne, J., Enas, G., (2011). Subgroup identification based on differential effect search (SIDES): A recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine 30:2601–2621.
    • (2011) Statistics in Medicine , vol.30 , pp. 2601-2621
    • Lipkovich, I.1    Dmitrienko, A.2    Denne, J.3    Enas, G.4
  • 30
    • 84891758815 scopus 로고    scopus 로고
    • Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES
    • Lipkovich, I., Dmitrienko, A., (2014a). Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using SIDES. Journal of Biopharmaceutical Statistics 24:130–153.
    • (2014) Journal of Biopharmaceutical Statistics , vol.24 , pp. 130-153
    • Lipkovich, I.1    Dmitrienko, A.2
  • 31
    • 84955306139 scopus 로고    scopus 로고
    • Biomarker identification in clinical trials
    • Carini C., Menon S., Chang M., (eds), New York: Chapman and Hall/CRC Press,. In, (editors
    • Lipkovich, I., Dmitrienko, A., (2014b). Biomarker identification in clinical trials. In C., Carini, S., Menon, M., Chang (editors.), Clinical and Statistical Considerations in Personalized Medicine. New York: Chapman and Hall/CRC Press.
    • (2014) Clinical and Statistical Considerations in Personalized Medicine
    • Lipkovich, I.1    Dmitrienko, A.2
  • 32
    • 84980343984 scopus 로고    scopus 로고
    • Tutorial in Biostatistics: Data-driven subgroup identification and analysis in clinical trials
    • Lipkovich, I., Dmitrienko, A., D’Agostino, R. B., (2017). Tutorial in Biostatistics: Data-driven subgroup identification and analysis in clinical trials. Statistics in Medicine 36:136–196.
    • (2017) Statistics in Medicine , vol.36 , pp. 136-196
    • Lipkovich, I.1    Dmitrienko, A.2    D’Agostino, R.B.3
  • 34
    • 84926513964 scopus 로고    scopus 로고
    • A regression tree approach to identifying subgroups with differential treatment effects
    • Loh, W. Y., He, X., Man, M., (2015). A regression tree approach to identifying subgroups with differential treatment effects. Statistics in Medicine 34:1818–1833.
    • (2015) Statistics in Medicine , vol.34 , pp. 1818-1833
    • Loh, W.Y.1    He, X.2    Man, M.3
  • 35
    • 84991503912 scopus 로고    scopus 로고
    • Identification of subgroups with differential treatment effects for longitudinal and multiresponse variables
    • Loh, W.-Y., Fu, H., Man, M., Champion, V., Yu, M., (2016). Identification of subgroups with differential treatment effects for longitudinal and multiresponse variables. Statistics in Medicine 35:4837–4855.
    • (2016) Statistics in Medicine , vol.35 , pp. 4837-4855
    • Loh, W.-Y.1    Fu, H.2    Man, M.3    Champion, V.4    Yu, M.5
  • 36
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.Y., Shih,Y.S
    • Loh, W.Y., Shih,Y.S. (1997). Split selection methods for classification trees. Statistica Sinica 7:815–840.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
  • 37
    • 84950315593 scopus 로고    scopus 로고
    • Survey results on industry practices and challenges in subgroup analysis in clinical trials
    • Mayer, C., Lipkovich, I., Dmitrienko, A., (2015). Survey results on industry practices and challenges in subgroup analysis in clinical trials. Statistics in Biopharmaceutical Research 7:272—282.
    • (2015) Statistics in Biopharmaceutical Research , vol.7 , pp. 272-282
    • Mayer, C.1    Lipkovich, I.2    Dmitrienko, A.3
  • 40
    • 11844302840 scopus 로고    scopus 로고
    • Subgroup analysis in randomized controlled trials: Importance, indications, and interpretation
    • Rothwell, P. M., (2005). Subgroup analysis in randomized controlled trials: Importance, indications, and interpretation. Lancet 365:176–186.
    • (2005) Lancet , vol.365 , pp. 176-186
    • Rothwell, P.M.1
  • 41
    • 4344621625 scopus 로고    scopus 로고
    • A new approach to modelling interaction between treatment and continuous covariates in clinical trials by using fractional polynomials
    • Royston, P., Sauerbrei, W., (2004). A new approach to modelling interaction between treatment and continuous covariates in clinical trials by using fractional polynomials. Statistics in Medicine 23:2509–2525.
    • (2004) Statistics in Medicine , vol.23 , pp. 2509-2525
    • Royston, P.1    Sauerbrei, W.2
  • 42
    • 84884182515 scopus 로고    scopus 로고
    • Interaction of treatment with a continuous variable: Simulation study of power for several methods of analysis
    • Royston, P., Sauerbrei, W., (2013). Interaction of treatment with a continuous variable: Simulation study of power for several methods of analysis. Statistics in Medicine 32:3788–3803.
    • (2013) Statistics in Medicine , vol.32 , pp. 3788-3803
    • Royston, P.1    Sauerbrei, W.2
  • 43
    • 84984981992 scopus 로고    scopus 로고
    • Exploratory subgroup analysis in clinical trials by model selection
    • Rosenkranz, G. K., (2016). Exploratory subgroup analysis in clinical trials by model selection. Biometrical Journal 58:1217–1228.
    • (2016) Biometrical Journal , vol.58 , pp. 1217-1228
    • Rosenkranz, G.K.1
  • 45
    • 79955762500 scopus 로고    scopus 로고
    • Using cross validation to evaluate the predictive accuracy of survival risk classifiers based on high dimensional data
    • 12
    • Simon, R. M., Subramanian, J., Li, M. C., Menezes, S., (2011). Using cross validation to evaluate the predictive accuracy of survival risk classifiers based on high dimensional data. Briefings in Bioinformatics 12:203–214.
    • (2011) Briefings in Bioinformatics , pp. 203-214
    • Simon, R.M.1    Subramanian, J.2    Li, M.C.3    Menezes, S.4
  • 46
    • 77951082212 scopus 로고    scopus 로고
    • Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses
    • Sun, X., Briel, M., Walter, S. D., Guyatt, G. H., (2010). Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. British Medical Journal 340:850–854.
    • (2010) British Medical Journal , vol.340 , pp. 850-854
    • Sun, X.1    Briel, M.2    Walter, S.D.3    Guyatt, G.H.4
  • 47
    • 84879843112 scopus 로고    scopus 로고
    • A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research
    • Varadhan, R., Segal, J. B., Boyd, C. M., Wu, A. W., Weiss, C. O., (2013). A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research. Journal of Clinical Epidemiology 66:818–825.
    • (2013) Journal of Clinical Epidemiology , vol.66 , pp. 818-825
    • Varadhan, R.1    Segal, J.B.2    Boyd, C.M.3    Wu, A.W.4    Weiss, C.O.5
  • 48
    • 84888130933 scopus 로고    scopus 로고
    • A regulatory perspective on essential considerations in design and analysis of subgroups correctly classified
    • Wang, S. J., Hung, H. M. J., (2014). A regulatory perspective on essential considerations in design and analysis of subgroups correctly classified. Journal of Biopharmaceutical Statistics 24:19–41.
    • (2014) Journal of Biopharmaceutical Statistics , vol.24 , pp. 19-41
    • Wang, S.J.1    Hung, H.M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.