메뉴 건너뛰기




Volumn 43, Issue , 2018, Pages 326-339

Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system

Author keywords

Electromagnetic; Magnetic levitation; Piezoelectric; Self powered; Triboelectric; Wireless sensor system

Indexed keywords

COMPUTER CONTROL SYSTEMS; ELECTRIC GENERATORS; ENERGY DISSIPATION; FATIGUE DAMAGE; MAGNETIC LEVITATION; MAGNETIC LEVITATION VEHICLES; NANOTECHNOLOGY; PIEZOELECTRICITY; TRIBOELECTRICITY;

EID: 85034846613     PISSN: 22112855     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nanoen.2017.11.039     Document Type: Article
Times cited : (182)

References (33)
  • 1
    • 84939212748 scopus 로고    scopus 로고
    • High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries
    • Chen, Jia-Jia, Symes, Mark D., Fan, Shao-Cong, Zheng, Ming-Sen, Miras, Haralampos N., Dong, Quan-Feng, Cronin, Leroy, High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries. Adv. Mater. 27:31 (2015), 4649–4654.
    • (2015) Adv. Mater. , vol.27 , Issue.31 , pp. 4649-4654
    • Chen, J.-J.1    Symes, M.D.2    Fan, S.-C.3    Zheng, M.-S.4    Miras, H.N.5    Dong, Q.-F.6    Cronin, L.7
  • 2
    • 84889655043 scopus 로고    scopus 로고
    • A single-electrode based triboelectric nanogenerator as self-powered tracking system
    • Yang, Y., Zhou, Y.S., Zhang, H., et al. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 25:45 (2013), 6594–6601.
    • (2013) Adv. Mater. , vol.25 , Issue.45 , pp. 6594-6601
    • Yang, Y.1    Zhou, Y.S.2    Zhang, H.3
  • 3
    • 84937971602 scopus 로고    scopus 로고
    • Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source
    • Zhong, X., Yang, Y., Wang, X., et al. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13 (2015), 771–780.
    • (2015) Nano Energy , vol.13 , pp. 771-780
    • Zhong, X.1    Yang, Y.2    Wang, X.3
  • 4
    • 79959764885 scopus 로고    scopus 로고
    • Power MEMS and Microengines. Transducers ’97
    • In: Proceedings of the 9th International Conference on Solid-State Sensors and Actuators, Chicago, IL.
    • A.H. Epstein, S.D. Senturia, et al. Power MEMS and Microengines. Transducers ’97, In: Proceedings of the 9th International Conference on Solid-State Sensors and Actuators, Chicago, IL, 1997.
    • (1997)
    • Epstein, A.H.1    Senturia, S.D.2
  • 5
    • 84872412934 scopus 로고    scopus 로고
    • A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane
    • Yu, A., Zhao, Y., Jiang, P., et al. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane. Nanotechnology, 24(5), 2013, 055501.
    • (2013) Nanotechnology , vol.24 , Issue.5 , pp. 055501
    • Yu, A.1    Zhao, Y.2    Jiang, P.3
  • 6
    • 79958862971 scopus 로고    scopus 로고
    • Self-powered system with wireless data transmission
    • Hu, Y., Zhang, Y., Xu, C., et al. Self-powered system with wireless data transmission. Nano Lett., 11(6), 2011, 2572.
    • (2011) Nano Lett. , vol.11 , Issue.6 , pp. 2572
    • Hu, Y.1    Zhang, Y.2    Xu, C.3
  • 7
    • 84904722824 scopus 로고    scopus 로고
    • Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting
    • Hu, Y., Yang, J., Niu, S., et al. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. Acs Nano, 8(7), 2014, 7442.
    • (2014) Acs Nano , vol.8 , Issue.7 , pp. 7442
    • Hu, Y.1    Yang, J.2    Niu, S.3
  • 8
    • 84876131971 scopus 로고    scopus 로고
    • A planar electromagnetic energy harvesting transducer using a multi-polemagnetic plate
    • Roundy, S., Takahashi, E., A planar electromagnetic energy harvesting transducer using a multi-polemagnetic plate. Sens. Actuators A 195 (2013), 98–104.
    • (2013) Sens. Actuators A , vol.195 , pp. 98-104
    • Roundy, S.1    Takahashi, E.2
  • 9
    • 84989841240 scopus 로고    scopus 로고
    • Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator
    • Huang, L.B., Xu, W., Bai, G., et al. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30 (2016), 36–42.
    • (2016) Nano Energy , vol.30 , pp. 36-42
    • Huang, L.B.1    Xu, W.2    Bai, G.3
  • 10
    • 84904709233 scopus 로고    scopus 로고
    • Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester
    • Hwang, G.T., Park, H., et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater., 26(28), 2014, 4880.
    • (2014) Adv. Mater. , vol.26 , Issue.28 , pp. 4880
    • Hwang, G.T.1    Park, H.2
  • 11
    • 84928963374 scopus 로고    scopus 로고
    • A hyper-stretchable elastic-composite energy harvester
    • Jeong, C.K., Lee, J., Han, S., et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater., 27(18), 2015, 2866.
    • (2015) Adv. Mater. , vol.27 , Issue.18 , pp. 2866
    • Jeong, C.K.1    Lee, J.2    Han, S.3
  • 12
    • 84866309764 scopus 로고    scopus 로고
    • Magnetostrictive-piezoelectric composite structures for energyharvesting
    • Lafont, T., et al. Magnetostrictive-piezoelectric composite structures for energyharvesting. J. Micromech. Microeng., 22, 2012, 004009.
    • (2012) J. Micromech. Microeng. , vol.22 , pp. 004009
    • Lafont, T.1
  • 13
    • 85040371429 scopus 로고
    • Magnetostriction generators
    • Osborn, J.A., Magnetostriction generators. Electr. Eng. 67:6 (1948), 571–578.
    • (1948) Electr. Eng. , vol.67 , Issue.6 , pp. 571-578
    • Osborn, J.A.1
  • 14
    • 85027931329 scopus 로고    scopus 로고
    • Stretchable-rubber-based triboelectric nanogenerator and its application as self‐powered body motion sensors
    • Yi, F., Lin, L., Niu, S., et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self‐powered body motion sensors. Adv. Funct. Mater. 25:24 (2015), 3688–3696.
    • (2015) Adv. Funct. Mater. , vol.25 , Issue.24 , pp. 3688-3696
    • Yi, F.1    Lin, L.2    Niu, S.3
  • 15
    • 84899411211 scopus 로고    scopus 로고
    • Triboelectric sensor for self-powered tracking of object motion inside tubing
    • Su, Y., Zhu, G., Yang, W., et al. Triboelectric sensor for self-powered tracking of object motion inside tubing. Acs Nano 8:4 (2014), 3843–3850.
    • (2014) Acs Nano , vol.8 , Issue.4 , pp. 3843-3850
    • Su, Y.1    Zhu, G.2    Yang, W.3
  • 16
    • 85028371071 scopus 로고    scopus 로고
    • Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode
    • Xu, W., Huang, L.B., Hao, J., Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy, 2017, 10.1016/j.nanoen.2017.08.045.
    • (2017) Nano Energy
    • Xu, W.1    Huang, L.B.2    Hao, J.3
  • 17
    • 84957990126 scopus 로고    scopus 로고
    • Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions
    • Huang, L.B., Bai, G., Wong, M.C., et al. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater., 28(14), 2016, 2744.
    • (2016) Adv. Mater. , vol.28 , Issue.14 , pp. 2744
    • Huang, L.B.1    Bai, G.2    Wong, M.C.3
  • 18
    • 84907365170 scopus 로고    scopus 로고
    • Hybrid triboelectricnanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
    • Su, Y., Wen, X., Zhu, G., et al. Hybrid triboelectricnanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 9:9 (2014), 186–195.
    • (2014) Nano Energy , vol.9 , Issue.9 , pp. 186-195
    • Su, Y.1    Wen, X.2    Zhu, G.3
  • 19
    • 84883868353 scopus 로고    scopus 로고
    • Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
    • Zhu, G., Bai, P., Chen, J., et al. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2:5 (2013), 688–692.
    • (2013) Nano Energy , vol.2 , Issue.5 , pp. 688-692
    • Zhu, G.1    Bai, P.2    Chen, J.3
  • 20
    • 85028025477 scopus 로고    scopus 로고
    • A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
    • He, X., Wen, Q., Sun, Y., et al. A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy, 2017, 10.1016/j.nanoen.2017.08.024.
    • (2017) Nano Energy
    • He, X.1    Wen, Q.2    Sun, Y.3
  • 21
    • 0032074435 scopus 로고    scopus 로고
    • Self-powered signal processing using vibration-based power generation
    • Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circ. 33 (1998), 687–695.
    • (1998) IEEE J. Solid-State Circ. , vol.33 , pp. 687-695
    • Amirtharajah, R.1    Chandrakasan, A.P.2
  • 22
    • 34547578774 scopus 로고    scopus 로고
    • A micro electromagnetic generator for vibration energy harvesting
    • Beeby, S., A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17:7 (2007), 1257–1265.
    • (2007) J. Micromech. Microeng. , vol.17 , Issue.7 , pp. 1257-1265
    • Beeby, S.1
  • 23
    • 24644452464 scopus 로고    scopus 로고
    • Generating electricity while walking with loads
    • Rome, L.C., Flynn, L., Goldman, E.M., et al. Generating electricity while walking with loads. Science 309:5741 (2005), 1725–1728.
    • (2005) Science , vol.309 , Issue.5741 , pp. 1725-1728
    • Rome, L.C.1    Flynn, L.2    Goldman, E.M.3
  • 24
    • 76849102629 scopus 로고    scopus 로고
    • Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art
    • Khaligh, A., Zeng, P., Zheng, C., Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans. Ind. Electron. 57:3 (2010), 850–860.
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.3 , pp. 850-860
    • Khaligh, A.1    Zeng, P.2    Zheng, C.3
  • 25
    • 79958292666 scopus 로고    scopus 로고
    • The research of percolation theory and application
    • Liu, S.L., Feng, H.X., Zhang, J.Q., Wang, Y., The research of percolation theory and application. Appl. Chem. Ind. 39:7 (2010), 1074–1078.
    • (2010) Appl. Chem. Ind. , vol.39 , Issue.7 , pp. 1074-1078
    • Liu, S.L.1    Feng, H.X.2    Zhang, J.Q.3    Wang, Y.4
  • 26
    • 84888868810 scopus 로고    scopus 로고
    • Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
    • Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Acs Nano, 7(11), 2013, 9533.
    • (2013) Acs Nano , vol.7 , Issue.11 , pp. 9533
    • Wang, Z.L.1
  • 27
    • 84938632376 scopus 로고    scopus 로고
    • Novel spiral-like electrode structure design for realization of two modes of the energy harvesting
    • Lin, C., Guo, H., Xia, X., et al. Novel spiral-like electrode structure design for realization of two modes of the energy harvesting. Acs Appl. Mater. Interfaces, 7(30), 2015, 16450.
    • (2015) Acs Appl. Mater. Interfaces , vol.7 , Issue.30 , pp. 16450
    • Lin, C.1    Guo, H.2    Xia, X.3
  • 28
    • 85027947338 scopus 로고    scopus 로고
    • Energy harvesting: a motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator
    • Kanik, M., Say, M.G., Daglar, B., et al. Energy harvesting: a motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 27:14 (2015), 2367–2376.
    • (2015) Adv. Mater. , vol.27 , Issue.14 , pp. 2367-2376
    • Kanik, M.1    Say, M.G.2    Daglar, B.3
  • 29
    • 84904199302 scopus 로고    scopus 로고
    • 3D stack integrated triboelectric nanogenerator for harvesting vibration energy
    • Yang, W., Chen, J., Jing, Q., et al. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24:26 (2014), 4090–4096.
    • (2014) Adv. Funct. Mater. , vol.24 , Issue.26 , pp. 4090-4096
    • Yang, W.1    Chen, J.2    Jing, Q.3
  • 30
    • 84907629322 scopus 로고    scopus 로고
    • PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell
    • Xing, L., Nie, Y., Xue, X., Zhang, Y., PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10 (2014), 44–52.
    • (2014) Nano Energy , vol.10 , pp. 44-52
    • Xing, L.1    Nie, Y.2    Xue, X.3    Zhang, Y.4
  • 31
    • 84875677368 scopus 로고    scopus 로고
    • Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics
    • Yang, Y., Zhang, H., Liu, Y., Lin, Z.-H., Lee, S., Lin, Z., Wong, C.P., Wang, Z.L., Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7 (2013), 2808–2813.
    • (2013) ACS Nano , vol.7 , pp. 2808-2813
    • Yang, Y.1    Zhang, H.2    Liu, Y.3    Lin, Z.-H.4    Lee, S.5    Lin, Z.6    Wong, C.P.7    Wang, Z.L.8
  • 32
    • 84966263531 scopus 로고    scopus 로고
    • Self-powered wireless sensor node enabled by an aerosol- deposited PZT flexible energy harvester
    • Hwang, G., Annapureddy, V., Han, J.H., et al. Self-powered wireless sensor node enabled by an aerosol- deposited PZT flexible energy harvester. Adv. Energy Mater., 6(13), 2016, 1600237.
    • (2016) Adv. Energy Mater. , vol.6 , Issue.13 , pp. 1600237
    • Hwang, G.1    Annapureddy, V.2    Han, J.H.3
  • 33
    • 85018874171 scopus 로고    scopus 로고
    • In vivo self-powered wireless transmission using biocompatible flexible energy harvesters
    • Dong, H.K., Hong, J.S., Lee, H., et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater., 27(25), 2017, 1700341.
    • (2017) Adv. Funct. Mater. , vol.27 , Issue.25 , pp. 1700341
    • Dong, H.K.1    Hong, J.S.2    Lee, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.