-
1
-
-
84939212748
-
High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries
-
Chen, Jia-Jia, Symes, Mark D., Fan, Shao-Cong, Zheng, Ming-Sen, Miras, Haralampos N., Dong, Quan-Feng, Cronin, Leroy, High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries. Adv. Mater. 27:31 (2015), 4649–4654.
-
(2015)
Adv. Mater.
, vol.27
, Issue.31
, pp. 4649-4654
-
-
Chen, J.-J.1
Symes, M.D.2
Fan, S.-C.3
Zheng, M.-S.4
Miras, H.N.5
Dong, Q.-F.6
Cronin, L.7
-
2
-
-
84889655043
-
A single-electrode based triboelectric nanogenerator as self-powered tracking system
-
Yang, Y., Zhou, Y.S., Zhang, H., et al. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 25:45 (2013), 6594–6601.
-
(2013)
Adv. Mater.
, vol.25
, Issue.45
, pp. 6594-6601
-
-
Yang, Y.1
Zhou, Y.S.2
Zhang, H.3
-
3
-
-
84937971602
-
Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source
-
Zhong, X., Yang, Y., Wang, X., et al. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13 (2015), 771–780.
-
(2015)
Nano Energy
, vol.13
, pp. 771-780
-
-
Zhong, X.1
Yang, Y.2
Wang, X.3
-
4
-
-
79959764885
-
Power MEMS and Microengines. Transducers ’97
-
In: Proceedings of the 9th International Conference on Solid-State Sensors and Actuators, Chicago, IL.
-
A.H. Epstein, S.D. Senturia, et al. Power MEMS and Microengines. Transducers ’97, In: Proceedings of the 9th International Conference on Solid-State Sensors and Actuators, Chicago, IL, 1997.
-
(1997)
-
-
Epstein, A.H.1
Senturia, S.D.2
-
5
-
-
84872412934
-
A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane
-
Yu, A., Zhao, Y., Jiang, P., et al. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane. Nanotechnology, 24(5), 2013, 055501.
-
(2013)
Nanotechnology
, vol.24
, Issue.5
, pp. 055501
-
-
Yu, A.1
Zhao, Y.2
Jiang, P.3
-
6
-
-
79958862971
-
Self-powered system with wireless data transmission
-
Hu, Y., Zhang, Y., Xu, C., et al. Self-powered system with wireless data transmission. Nano Lett., 11(6), 2011, 2572.
-
(2011)
Nano Lett.
, vol.11
, Issue.6
, pp. 2572
-
-
Hu, Y.1
Zhang, Y.2
Xu, C.3
-
7
-
-
84904722824
-
Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting
-
Hu, Y., Yang, J., Niu, S., et al. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. Acs Nano, 8(7), 2014, 7442.
-
(2014)
Acs Nano
, vol.8
, Issue.7
, pp. 7442
-
-
Hu, Y.1
Yang, J.2
Niu, S.3
-
8
-
-
84876131971
-
A planar electromagnetic energy harvesting transducer using a multi-polemagnetic plate
-
Roundy, S., Takahashi, E., A planar electromagnetic energy harvesting transducer using a multi-polemagnetic plate. Sens. Actuators A 195 (2013), 98–104.
-
(2013)
Sens. Actuators A
, vol.195
, pp. 98-104
-
-
Roundy, S.1
Takahashi, E.2
-
9
-
-
84989841240
-
Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator
-
Huang, L.B., Xu, W., Bai, G., et al. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30 (2016), 36–42.
-
(2016)
Nano Energy
, vol.30
, pp. 36-42
-
-
Huang, L.B.1
Xu, W.2
Bai, G.3
-
10
-
-
84904709233
-
Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester
-
Hwang, G.T., Park, H., et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater., 26(28), 2014, 4880.
-
(2014)
Adv. Mater.
, vol.26
, Issue.28
, pp. 4880
-
-
Hwang, G.T.1
Park, H.2
-
11
-
-
84928963374
-
A hyper-stretchable elastic-composite energy harvester
-
Jeong, C.K., Lee, J., Han, S., et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater., 27(18), 2015, 2866.
-
(2015)
Adv. Mater.
, vol.27
, Issue.18
, pp. 2866
-
-
Jeong, C.K.1
Lee, J.2
Han, S.3
-
12
-
-
84866309764
-
Magnetostrictive-piezoelectric composite structures for energyharvesting
-
Lafont, T., et al. Magnetostrictive-piezoelectric composite structures for energyharvesting. J. Micromech. Microeng., 22, 2012, 004009.
-
(2012)
J. Micromech. Microeng.
, vol.22
, pp. 004009
-
-
Lafont, T.1
-
13
-
-
85040371429
-
Magnetostriction generators
-
Osborn, J.A., Magnetostriction generators. Electr. Eng. 67:6 (1948), 571–578.
-
(1948)
Electr. Eng.
, vol.67
, Issue.6
, pp. 571-578
-
-
Osborn, J.A.1
-
14
-
-
85027931329
-
Stretchable-rubber-based triboelectric nanogenerator and its application as self‐powered body motion sensors
-
Yi, F., Lin, L., Niu, S., et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self‐powered body motion sensors. Adv. Funct. Mater. 25:24 (2015), 3688–3696.
-
(2015)
Adv. Funct. Mater.
, vol.25
, Issue.24
, pp. 3688-3696
-
-
Yi, F.1
Lin, L.2
Niu, S.3
-
15
-
-
84899411211
-
Triboelectric sensor for self-powered tracking of object motion inside tubing
-
Su, Y., Zhu, G., Yang, W., et al. Triboelectric sensor for self-powered tracking of object motion inside tubing. Acs Nano 8:4 (2014), 3843–3850.
-
(2014)
Acs Nano
, vol.8
, Issue.4
, pp. 3843-3850
-
-
Su, Y.1
Zhu, G.2
Yang, W.3
-
16
-
-
85028371071
-
Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode
-
Xu, W., Huang, L.B., Hao, J., Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy, 2017, 10.1016/j.nanoen.2017.08.045.
-
(2017)
Nano Energy
-
-
Xu, W.1
Huang, L.B.2
Hao, J.3
-
17
-
-
84957990126
-
Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions
-
Huang, L.B., Bai, G., Wong, M.C., et al. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater., 28(14), 2016, 2744.
-
(2016)
Adv. Mater.
, vol.28
, Issue.14
, pp. 2744
-
-
Huang, L.B.1
Bai, G.2
Wong, M.C.3
-
18
-
-
84907365170
-
Hybrid triboelectricnanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
-
Su, Y., Wen, X., Zhu, G., et al. Hybrid triboelectricnanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 9:9 (2014), 186–195.
-
(2014)
Nano Energy
, vol.9
, Issue.9
, pp. 186-195
-
-
Su, Y.1
Wen, X.2
Zhu, G.3
-
19
-
-
84883868353
-
Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
-
Zhu, G., Bai, P., Chen, J., et al. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2:5 (2013), 688–692.
-
(2013)
Nano Energy
, vol.2
, Issue.5
, pp. 688-692
-
-
Zhu, G.1
Bai, P.2
Chen, J.3
-
20
-
-
85028025477
-
A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
-
He, X., Wen, Q., Sun, Y., et al. A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy, 2017, 10.1016/j.nanoen.2017.08.024.
-
(2017)
Nano Energy
-
-
He, X.1
Wen, Q.2
Sun, Y.3
-
21
-
-
0032074435
-
Self-powered signal processing using vibration-based power generation
-
Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circ. 33 (1998), 687–695.
-
(1998)
IEEE J. Solid-State Circ.
, vol.33
, pp. 687-695
-
-
Amirtharajah, R.1
Chandrakasan, A.P.2
-
22
-
-
34547578774
-
A micro electromagnetic generator for vibration energy harvesting
-
Beeby, S., A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17:7 (2007), 1257–1265.
-
(2007)
J. Micromech. Microeng.
, vol.17
, Issue.7
, pp. 1257-1265
-
-
Beeby, S.1
-
23
-
-
24644452464
-
Generating electricity while walking with loads
-
Rome, L.C., Flynn, L., Goldman, E.M., et al. Generating electricity while walking with loads. Science 309:5741 (2005), 1725–1728.
-
(2005)
Science
, vol.309
, Issue.5741
, pp. 1725-1728
-
-
Rome, L.C.1
Flynn, L.2
Goldman, E.M.3
-
24
-
-
76849102629
-
Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art
-
Khaligh, A., Zeng, P., Zheng, C., Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans. Ind. Electron. 57:3 (2010), 850–860.
-
(2010)
IEEE Trans. Ind. Electron.
, vol.57
, Issue.3
, pp. 850-860
-
-
Khaligh, A.1
Zeng, P.2
Zheng, C.3
-
25
-
-
79958292666
-
The research of percolation theory and application
-
Liu, S.L., Feng, H.X., Zhang, J.Q., Wang, Y., The research of percolation theory and application. Appl. Chem. Ind. 39:7 (2010), 1074–1078.
-
(2010)
Appl. Chem. Ind.
, vol.39
, Issue.7
, pp. 1074-1078
-
-
Liu, S.L.1
Feng, H.X.2
Zhang, J.Q.3
Wang, Y.4
-
26
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Acs Nano, 7(11), 2013, 9533.
-
(2013)
Acs Nano
, vol.7
, Issue.11
, pp. 9533
-
-
Wang, Z.L.1
-
27
-
-
84938632376
-
Novel spiral-like electrode structure design for realization of two modes of the energy harvesting
-
Lin, C., Guo, H., Xia, X., et al. Novel spiral-like electrode structure design for realization of two modes of the energy harvesting. Acs Appl. Mater. Interfaces, 7(30), 2015, 16450.
-
(2015)
Acs Appl. Mater. Interfaces
, vol.7
, Issue.30
, pp. 16450
-
-
Lin, C.1
Guo, H.2
Xia, X.3
-
28
-
-
85027947338
-
Energy harvesting: a motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator
-
Kanik, M., Say, M.G., Daglar, B., et al. Energy harvesting: a motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 27:14 (2015), 2367–2376.
-
(2015)
Adv. Mater.
, vol.27
, Issue.14
, pp. 2367-2376
-
-
Kanik, M.1
Say, M.G.2
Daglar, B.3
-
29
-
-
84904199302
-
3D stack integrated triboelectric nanogenerator for harvesting vibration energy
-
Yang, W., Chen, J., Jing, Q., et al. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24:26 (2014), 4090–4096.
-
(2014)
Adv. Funct. Mater.
, vol.24
, Issue.26
, pp. 4090-4096
-
-
Yang, W.1
Chen, J.2
Jing, Q.3
-
30
-
-
84907629322
-
PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell
-
Xing, L., Nie, Y., Xue, X., Zhang, Y., PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10 (2014), 44–52.
-
(2014)
Nano Energy
, vol.10
, pp. 44-52
-
-
Xing, L.1
Nie, Y.2
Xue, X.3
Zhang, Y.4
-
31
-
-
84875677368
-
Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics
-
Yang, Y., Zhang, H., Liu, Y., Lin, Z.-H., Lee, S., Lin, Z., Wong, C.P., Wang, Z.L., Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7 (2013), 2808–2813.
-
(2013)
ACS Nano
, vol.7
, pp. 2808-2813
-
-
Yang, Y.1
Zhang, H.2
Liu, Y.3
Lin, Z.-H.4
Lee, S.5
Lin, Z.6
Wong, C.P.7
Wang, Z.L.8
-
32
-
-
84966263531
-
Self-powered wireless sensor node enabled by an aerosol- deposited PZT flexible energy harvester
-
Hwang, G., Annapureddy, V., Han, J.H., et al. Self-powered wireless sensor node enabled by an aerosol- deposited PZT flexible energy harvester. Adv. Energy Mater., 6(13), 2016, 1600237.
-
(2016)
Adv. Energy Mater.
, vol.6
, Issue.13
, pp. 1600237
-
-
Hwang, G.1
Annapureddy, V.2
Han, J.H.3
-
33
-
-
85018874171
-
In vivo self-powered wireless transmission using biocompatible flexible energy harvesters
-
Dong, H.K., Hong, J.S., Lee, H., et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater., 27(25), 2017, 1700341.
-
(2017)
Adv. Funct. Mater.
, vol.27
, Issue.25
, pp. 1700341
-
-
Dong, H.K.1
Hong, J.S.2
Lee, H.3
|