메뉴 건너뛰기




Volumn 38, Issue 11, 2017, Pages 3394-3414

Yield estimation and forecasting for winter wheat in Hungary using time series of modis data

Author keywords

[No Author keywords available]

Indexed keywords

CROPS; CURVE FITTING; RADIOMETERS; TIME SERIES; VEGETATION;

EID: 85034816322     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2017.1295482     Document Type: Article
Times cited : (47)

References (57)
  • 2
    • 84874788283 scopus 로고    scopus 로고
    • Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs.
    • Atzberger, C. 2013. “Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs.” Remote Sensing 5: 948–981. doi:10.3390/rs5020949.
    • (2013) Remote Sensing , vol.5 , pp. 948-981
    • Atzberger, C.1
  • 3
    • 84952042862 scopus 로고    scopus 로고
    • Matching the Phenology of Net Ecosystem Exchange and Vegetation Indices Estimated with MODIS and FLUXNET In-Situ Observations.
    • Balzarolo, M., S. Vicca, A. L. Nguy-Robertson, D. Bonal, J. A. Elbers, Y. H. Fu, T. Grünwald, et al. 2016. “Matching the Phenology of Net Ecosystem Exchange and Vegetation Indices Estimated with MODIS and FLUXNET In-Situ Observations.” Remote Sensing of Environment 174: 290–300. doi:10.1016/j.rse.2015.12.017.
    • (2016) Remote Sensing of Environment , vol.174 , pp. 290-300
    • Balzarolo, M.1    Vicca, S.2    Nguy-Robertson, A.L.3    Bonal, D.4    Elbers, J.A.5    Fu, Y.H.6    Grünwald, T.7
  • 5
    • 77949487217 scopus 로고    scopus 로고
    • A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data.
    • Becker-Reshef, I., E. Vermote, M. Lindeman, and C. Justice. 2010. “A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data.” Remote Sensing of Environment 114: 1312–1323. doi:10.1016/j.rse.2010.01.010.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1312-1323
    • Becker-Reshef, I.1    Vermote, E.2    Lindeman, M.3    Justice, C.4
  • 7
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting Crop Yield Using Remotely Sensed Vegetation Indices and Crop Phenology Metrics.
    • Bolton, D. K., and M. A. Friedl. 2013. “Forecasting Crop Yield Using Remotely Sensed Vegetation Indices and Crop Phenology Metrics.” Agricultural and Forest Meteorology 173: 74–84. doi:10.1016/j.agrformet.2013.01.007.
    • (2013) Agricultural and Forest Meteorology , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 8
    • 15944380021 scopus 로고    scopus 로고
    • Technical Report 89, European Environment Agency
    • Büttner, G., J. Feranec, and G. Jaffrain. 2002. “Corine Land Cover Update 2000.” Technical Report 89, European Environment Agency. http://www.eea.europa.eu/publications/technical_report_2002_89)
    • (2002) Corine Land Cover Update 2000
    • Büttner, G.1    Feranec, J.2    Jaffrain, G.3
  • 9
    • 85034860399 scopus 로고    scopus 로고
    • CIMSS (Cooperative Institute for Meteorological Satellite Studies). Accessed May 25, 2016
    • CIMSS (Cooperative Institute for Meteorological Satellite Studies). Accessed May 25, 2016. http://cimss.ssec.wisc.edu/imapp
  • 10
    • 0031205919 scopus 로고    scopus 로고
    • A Simplified Approach for Yield Prediction of Sugar Beet Based on Optical Remote Sensing Data.
    • Clevers, J. G. P. W. 1997. “A Simplified Approach for Yield Prediction of Sugar Beet Based on Optical Remote Sensing Data.” Remote Sensing of Environment 61: 221–228. doi:10.1016/S0034-4257(97)00004-7.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 221-228
    • Clevers, J.G.P.W.1
  • 11
    • 80054959823 scopus 로고    scopus 로고
    • Potential Performances of Remotely Sensed LAI Assimilation in WOFOST Model Based on an OSS Experiment.
    • Curnel, Y., A. J. W. de Wit, G. Duvellier, and P. Defourny. 2011. “Potential Performances of Remotely Sensed LAI Assimilation in WOFOST Model Based on an OSS Experiment.” Agricultural and Forest Meteorology 151: 1843–1855. doi:10.1016/j.agrformet.2011.08.002.
    • (2011) Agricultural and Forest Meteorology , vol.151 , pp. 1843-1855
    • Curnel, Y.1    De Wit, A.J.W.2    Duvellier, G.3    Defourny, P.4
  • 13
    • 84923543554 scopus 로고    scopus 로고
    • Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics.
    • Dempewolf, J., B. Adusei, I. Becker-Reshef, M. Hansen, P. Potapov, A. Khan, and B. Barker. 2014. “Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics.” Remote Sensing 6: 9653–9675. doi:10.3390/rs6109653.
    • (2014) Remote Sensing , vol.6 , pp. 9653-9675
    • Dempewolf, J.1    Adusei, B.2    Becker-Reshef, I.3    Hansen, M.4    Potapov, P.5    Khan, A.6    Barker, B.7
  • 16
    • 85034809784 scopus 로고    scopus 로고
    • EOSDIS-ECHO (Earth Observing System Data and Information System Earth Observing System ClearingHouse) Accessed May 25
    • EOSDIS-ECHO (Earth Observing System Data and Information System Earth Observing System ClearingHouse) Accessed May 25, 2016. https://wist.echo.nasa.gov/api/
    • (2016)
  • 17
    • 79960067836 scopus 로고    scopus 로고
    • Use of NDVI/AVHRR Time-Series Profiles for Soybean Crop Monitoring in Brazil.
    • Esquerdo, J., J. Zullo, and J. F. G. Antunes. 2011. “Use of NDVI/AVHRR Time-Series Profiles for Soybean Crop Monitoring in Brazil.” International Journal of Remote Sensing 32: 3711–3727. doi:10.1080/01431161003764112.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 3711-3727
    • Esquerdo, J.1    Zullo, J.2    Antunes, J.F.G.3
  • 19
    • 85027950286 scopus 로고    scopus 로고
    • Improving the Timeliness of Winter Wheat Production Forecast in the United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day Information.
    • Franch, B., E. F. Vermote, I. Becker-Reshef, M. Claverie, J. Huang, J. Zhang, C. Justice, and J. A. Sobrino. 2015. “Improving the Timeliness of Winter Wheat Production Forecast in the United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day Information.” Remote Sensing of Environment 161: 131–148. doi:10.1016/j.rse.2015.02.014.
    • (2015) Remote Sensing of Environment , vol.161 , pp. 131-148
    • Franch, B.1    Vermote, E.F.2    Becker-Reshef, I.3    Claverie, M.4    Huang, J.5    Zhang, J.6    Justice, C.7    Sobrino, J.A.8
  • 22
    • 0030292154 scopus 로고    scopus 로고
    • Using NOAA AVHRR Data to Estimate Maize Production in the United States Corn Belt.
    • Hayes, M. J., and W. L. Decker. 1996. “Using NOAA AVHRR Data to Estimate Maize Production in the United States Corn Belt.” International Journal of Remote Sensing 17: 3189–3200. doi:10.1080/01431169608949138.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 3189-3200
    • Hayes, M.J.1    Decker, W.L.2
  • 23
    • 85034832100 scopus 로고    scopus 로고
    • HCSO (Hungarian Central Statistic Office) Accessed May 25
    • HCSO (Hungarian Central Statistic Office) Accessed May 25, 2016. http://www.ksh.hu/docs/hun/xftp/idoszaki/mezo/mezoszerepe14.pdf
    • (2016)
  • 24
    • 84873595818 scopus 로고    scopus 로고
    • Evaluation of the Potential of MODIS Satellite Data to Predict Vegetation Phenology in Different Biomes: An Investigation Using Ground-Based NDVI Measurements.
    • Hmimina, G., E. Dufrene, J. Y. Pontailler, N. Delpierre, M. Aubinet, B. Caquet, A. Grandcourt, et al. 2013. “Evaluation of the Potential of MODIS Satellite Data to Predict Vegetation Phenology in Different Biomes: An Investigation Using Ground-Based NDVI Measurements.” Remote Sensing of Environment 132: 145–158. doi:10.1016/j.rse.2013.01.010.
    • (2013) Remote Sensing of Environment , vol.132 , pp. 145-158
    • Hmimina, G.1    Dufrene, E.2    Pontailler, J.Y.3    Delpierre, N.4    Aubinet, M.5    Caquet, B.6    Grandcourt, A.7
  • 25
    • 0032020277 scopus 로고    scopus 로고
    • Spring Wheat Yield Estimation for Western Canada Using NOAA NDVI Data.
    • Hochheim, K. P., and D. G. Barber. 1998. “Spring Wheat Yield Estimation for Western Canada Using NOAA NDVI Data.” Canadian Journal of Remote Sensing 24: 17–27. doi:10.1080/07038992.1998.10874687.
    • (1998) Canadian Journal of Remote Sensing , vol.24 , pp. 17-27
    • Hochheim, K.P.1    Barber, D.G.2
  • 27
    • 84923040982 scopus 로고    scopus 로고
    • Improving Winter Wheat Yield Estimation by Assimilation of the Leaf Area Index from Landsat TM and MODIS Data into the WOFOST Model.
    • Huang, J., L. Tian, S. Liang, H. Ma, I. Becker-Reshef, Y. Huang, W. Su, X. Zhang, D. Zhu, and W. Wu. 2015. “Improving Winter Wheat Yield Estimation by Assimilation of the Leaf Area Index from Landsat TM and MODIS Data into the WOFOST Model.” Agricultural and Forest Meteorology 204: 106–121. doi:10.1016/j.agrformet.2015.02.001.
    • (2015) Agricultural and Forest Meteorology , vol.204 , pp. 106-121
    • Huang, J.1    Tian, L.2    Liang, S.3    Ma, H.4    Becker-Reshef, I.5    Huang, Y.6    Su, W.7    Zhang, X.8    Zhu, D.9    Wu, W.10
  • 28
    • 0020970475 scopus 로고
    • Spectral Indices in N-Space.
    • Jackson, R. D. 1983. “Spectral Indices in N-Space.” Remote Sensing of Environment 13: 409–421. doi:10.1016/0034-4257(83)90010-X.
    • (1983) Remote Sensing of Environment , vol.13 , pp. 409-421
    • Jackson, R.D.1
  • 29
    • 33645961267 scopus 로고    scopus 로고
    • Exploiting Synergies of Global Land Cover Products for Carbon Cycle Modeling.
    • Jung, M., K. Henkel, M. Herold, and G. Churkina. 2006. “Exploiting Synergies of Global Land Cover Products for Carbon Cycle Modeling.” Remote Sensing of Environment 101: 534–553. doi:10.1016/j.rse.2006.01.020.
    • (2006) Remote Sensing of Environment , vol.101 , pp. 534-553
    • Jung, M.1    Henkel, K.2    Herold, M.3    Churkina, G.4
  • 31
    • 48249097297 scopus 로고
    • Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation.
    • Knipling, E. B. 1970. “Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation.” Remote Sensing of Environment 1: 155–159. doi:10.1016/S0034-4257(70)80021-9.
    • (1970) Remote Sensing of Environment , vol.1 , pp. 155-159
    • Knipling, E.B.1
  • 33
    • 84857973744 scopus 로고    scopus 로고
    • Forecasting Crop Production Using Satellite-Based Vegetation Health Indices in Kansas, USA.
    • Kogan, F. N., L. Salazar, and L. Roytman. 2012. ““Forecasting Crop Production Using Satellite-Based Vegetation Health Indices in Kansas, USA.” International Journal of Remote Sensing 33: 2798–2814. doi:10.1080/01431161.2011.621464.
    • (2012) International Journal of Remote Sensing , vol.33 , pp. 2798-2814
    • Kogan, F.N.1    Salazar, L.2    Roytman, L.3
  • 35
    • 84923626148 scopus 로고    scopus 로고
    • Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale.
    • Kouadio, L., N. K. Newlands, A. Davidson, Y. Zhang, and A. Chipanshi. 2014. “Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale.” Remote Sensing 6: 10193–10214. doi:10.3390/rs61010193.
    • (2014) Remote Sensing , vol.6 , pp. 10193-10214
    • Kouadio, L.1    Newlands, N.K.2    Davidson, A.3    Zhang, Y.4    Chipanshi, A.5
  • 38
    • 84924262090 scopus 로고    scopus 로고
    • Towards Regional Grain Yield Forecasting with 1km-Resolution EO Biophysical Products: Strengths and Limitations at Pan-European Level.
    • López-Lozano, R., G. Duveiller, L. Seguini, M. Meroni, S. García-Condado, J. Hooker, O. Leo, and B. Baruth. 2015. “Towards Regional Grain Yield Forecasting with 1km-Resolution EO Biophysical Products: Strengths and Limitations at Pan-European Level.” Agricultural and Forest Meteorology 206: 12–32. doi:10.1016/j.agrformet.2015.02.021.
    • (2015) Agricultural and Forest Meteorology , vol.206 , pp. 12-32
    • López-Lozano, R.1    Duveiller, G.2    Seguini, L.3    Meroni, M.4    García-Condado, S.5    Hooker, J.6    Leo, O.7    Baruth, B.8
  • 39
    • 85016965709 scopus 로고    scopus 로고
    • Relationship between MODIS–NDVI Data and Wheat Yield: A Case Study in Northern Buenos Aires Province, Argentina.
    • Lopresti, M. F., C. M. Di Bella, and A. J. Degioanni. 2015. “Relationship between MODIS–NDVI Data and Wheat Yield: A Case Study in Northern Buenos Aires Province, Argentina.” Information Processing in Agriculture 2: 73–84. doi:10.1016/j.inpa.2015.06.001.
    • (2015) Information Processing in Agriculture , vol.2 , pp. 73-84
    • Lopresti, M.F.1    Di Bella, C.M.2    Degioanni, A.J.3
  • 40
    • 85034855258 scopus 로고    scopus 로고
    • MARS (Monitoring Agriculture with Remote Sensing). Accessed May 25
    • MARS (Monitoring Agriculture with Remote Sensing). Accessed May 25, 2016. https://ec.europa.eu/jrc/en/mars/bulletins
    • (2016)
  • 41
    • 0027007559 scopus 로고
    • Use of NOAA–AVHRR NDVI Data for Environmental Monitoring of Crop Forecasting in the Sahel. Preliminary Results.
    • Maselli, F., C. Conese, L. Petkov, and M. A. Gilabert. 1992. “Use of NOAA–AVHRR NDVI Data for Environmental Monitoring of Crop Forecasting in the Sahel. Preliminary Results.” International Journal of Remote Sensing 13: 2743–2749. doi:10.1080/01431169208904076.
    • (1992) International Journal of Remote Sensing , vol.13 , pp. 2743-2749
    • Maselli, F.1    Conese, C.2    Petkov, L.3    Gilabert, M.A.4
  • 42
    • 78651435852 scopus 로고    scopus 로고
    • Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data.
    • Mkhabela, M. S., P. Bullock, S. Raj, S. Wang, and Y. Yang. 2011. “Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data.” Agricultural and Forest Meteorology 151: 385–393. doi:10.1016/j.agrformet.2010.11.012.
    • (2011) Agricultural and Forest Meteorology , vol.151 , pp. 385-393
    • Mkhabela, M.S.1    Bullock, P.2    Raj, S.3    Wang, S.4    Yang, Y.5
  • 43
    • 0014776873 scopus 로고
    • River Flow Forecasting through Conceptual Models Part I — A Discussion of Principles.
    • Nash, J. E., and J. V. Sutcliffe. 1970. “River Flow Forecasting through Conceptual Models Part I — A Discussion of Principles.” Journal of Hydrology 10: 282–290. doi:10.1016/0022-1694(70)90255-6.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 44
    • 41249103143 scopus 로고    scopus 로고
    • Use of Vegetation Index and Meteorological Parameters for the Prediction of Crop Yield in India.
    • Prasad, A. K., R. P. Singh, V. Tare, and M. Kafatos. 2007. “Use of Vegetation Index and Meteorological Parameters for the Prediction of Crop Yield in India.” International Journal of Remote Sensing 28: 5207–5235. doi:10.1080/01431160601105843.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 5207-5235
    • Prasad, A.K.1    Singh, R.P.2    Tare, V.3    Kafatos, M.4
  • 46
    • 0027007342 scopus 로고
    • Assessment of Millet Yields and Production in Northern Burkina Faso Using Integrated NDVI from the AVHRR.
    • Rasmussen, M. S. 1992. “Assessment of Millet Yields and Production in Northern Burkina Faso Using Integrated NDVI from the AVHRR.” International Journal of Remote Sensing 13: 3431–3442. doi:10.1080/01431169208904132.
    • (1992) International Journal of Remote Sensing , vol.13 , pp. 3431-3442
    • Rasmussen, M.S.1
  • 47
    • 84877678838 scopus 로고    scopus 로고
    • Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection.
    • Rembold, F., C. Atzberger, I. Savin, and O. Rojas. 2013. “Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection.” Remote Sensing 5: 1704–1733. doi:10.3390/rs5041704.
    • (2013) Remote Sensing , vol.5 , pp. 1704-1733
    • Rembold, F.1    Atzberger, C.2    Savin, I.3    Rojas, O.4
  • 48
    • 0034522818 scopus 로고    scopus 로고
    • Estimating Crop Yields and Production by Integrating the FAO Crop Specific Water Data and Ground-Based Ancillary Data.
    • Reynolds, C. A., M. Yitayew, D. C. Slack, C. F. Hatchinson, A. Huete, and M. S. Petersen. 2010. “Estimating Crop Yields and Production by Integrating the FAO Crop Specific Water Data and Ground-Based Ancillary Data.” International Journal of Remote Sensing 21: 3487–3508. doi:10.1080/014311600750037516.
    • (2010) International Journal of Remote Sensing , vol.21 , pp. 3487-3508
    • Reynolds, C.A.1    Yitayew, M.2    Slack, D.C.3    Hatchinson, C.F.4    Huete, A.5    Petersen, M.S.6
  • 49
    • 34548321865 scopus 로고    scopus 로고
    • Use of Remote Sensing Data for Estimation of Winter Wheat Yield in the United States.
    • Salazar, L., F. Kogan, and L. Roytman. 2007. “Use of Remote Sensing Data for Estimation of Winter Wheat Yield in the United States.” International Journal of Remote Sensing 28: 3795–3811. doi:10.1080/01431160601050395.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 3795-3811
    • Salazar, L.1    Kogan, F.2    Roytman, L.3
  • 50
    • 62249212821 scopus 로고    scopus 로고
    • Improved Wheat Yield and Production Forecasting with a Moisture Stress Index, AVHRR and MODIS Data.
    • Schut, A. G. T., D. J. Stephens, R. G. H. Stovold, M. Adams, and R. L. Craig. 2009. “Improved Wheat Yield and Production Forecasting with a Moisture Stress Index, AVHRR and MODIS Data.” Crop and Pasture Science 60: 60–70. doi:10.1071/CP08182.
    • (2009) Crop and Pasture Science , vol.60 , pp. 60-70
    • Schut, A.G.T.1    Stephens, D.J.2    Stovold, R.G.H.3    Adams, M.4    Craig, R.L.5
  • 51
    • 85034814035 scopus 로고    scopus 로고
    • SeaDAS (SeaWiFS Data Analysis System, NASA); Accessed May 25, 2016)
    • SeaDAS (SeaWiFS Data Analysis System, NASA); Accessed May 25, 2016). http://seadas.gsfc.nasa.gov/modisl1db/
  • 53
    • 41449115901 scopus 로고    scopus 로고
    • Evaluation of the Onset of Green-Up in Temperate Deciduous Broadleaf Forests Derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Data.
    • Soudani, K., G. Le Maire, E. Dufrêne, C. François, N. Delpierre, E. Ulrich, and S. Cecchini. 2008. “Evaluation of the Onset of Green-Up in Temperate Deciduous Broadleaf Forests Derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Data.” Remote Sensing of Environment 112: 2643–2655. doi:10.1016/j.rse.2007.12.004.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2643-2655
    • Soudani, K.1    Le Maire, G.2    Dufrêne, E.3    François, C.4    Delpierre, N.5    Ulrich, E.6    Cecchini, S.7
  • 55
    • 33645713372 scopus 로고    scopus 로고
    • Early Prediction of Crop Production Using Drought Indices at Different Time-Scales and Remote Sensing Data: Application in the Ebro Valley (North-East Spain).
    • Vicente-Serrano, S. M., J. M. Cuadrat-Prats, and A. Romo. 2006. “Early Prediction of Crop Production Using Drought Indices at Different Time-Scales and Remote Sensing Data: Application in the Ebro Valley (North-East Spain).” International Journal of Remote Sensing 27: 511–518. doi:10.1080/01431160500296032.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 511-518
    • Vicente-Serrano, S.M.1    Cuadrat-Prats, J.M.2    Romo, A.3
  • 56
    • 85027957919 scopus 로고    scopus 로고
    • Towards Improving the Accuracy of Opium Yield Estimates with Remote Sensing.
    • Waine, T. W., D. M. Simms, J. C. Taylor, and G. R. Juniper. 2014. “Towards Improving the Accuracy of Opium Yield Estimates with Remote Sensing.” International Journal of Remote Sensing 35: 6292–6309. doi:10.1080/01431161.2014.951743.
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 6292-6309
    • Waine, T.W.1    Simms, D.M.2    Taylor, J.C.3    Juniper, G.R.4
  • 57
    • 0000960084 scopus 로고
    • Leaf Area Index Estimates for Wheat from Landsat and Their Implications for Evapotranspiration and Crop Modeling.
    • Wiegand, C. L., A. J. Richardson, and E. T. Kanemasu. 1979. “Leaf Area Index Estimates for Wheat from Landsat and Their Implications for Evapotranspiration and Crop Modeling.” Agronomy Journal 71: 336–342. doi:10.2134/agronj1979.00021962007100020027x.
    • (1979) Agronomy Journal , vol.71 , pp. 336-342
    • Wiegand, C.L.1    Richardson, A.J.2    Kanemasu, E.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.