메뉴 건너뛰기




Volumn 9, Issue 11, 2017, Pages

In-season crop mapping with GF-1/WFV data by combining object-based image analysis and random forest

Author keywords

Crop mapping; In season; Object based classification; Random Forest

Indexed keywords

AGRICULTURE; CROPS; DECISION MAKING; DECISION TREES; IMAGE ANALYSIS; IMAGE RESOLUTION; PHOTOMAPPING; VEGETATION;

EID: 85034771593     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9111184     Document Type: Article
Times cited : (75)

References (60)
  • 1
    • 78651435852 scopus 로고    scopus 로고
    • Crop yield forecasting on the Canadian prairies using MODIS NDVI data
    • Mkhabela, M.; Bullock, P.; Raj, S.;Wang, S.; Yang, Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385-393
    • (2011) Agric. For. Meteorol , vol.151 , pp. 385-393
    • Mkhabela, M.1    Bullock, P.2    Raj, S.3    Wang, S.4    Yang, Y.5
  • 2
    • 77949486575 scopus 로고    scopus 로고
    • The spatial distribution of crop types from MODIS data: Temporal unmixing using independent component analysis
    • Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using independent component analysis. Remote Sens. Environ. 2010, 114, 1190-1204
    • (2010) Remote Sens. Environ , vol.114 , pp. 1190-1204
    • Ozdogan, M.1
  • 3
    • 34247523027 scopus 로고    scopus 로고
    • Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S
    • Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290-310
    • (2007) Central Great Plains. Remote Sens. Environ , vol.108 , pp. 290-310
    • Wardlow, B.D.1    Egbert, S.L.2    Kastens, J.H.3
  • 4
    • 84948778757 scopus 로고    scopus 로고
    • A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices
    • Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices. Remote Sens. Environ. 2015, 171, 218-233
    • (2015) Remote Sens. Environ , vol.171 , pp. 218-233
    • Villa, P.1    Bresciani, M.2    Bolpagni, R.3    Pinardi, M.4    Giardino, C.5
  • 5
    • 84904268960 scopus 로고    scopus 로고
    • How could agricultural land systems contribute to raise food production under global change
    • Wu, W.B.; Yu, Q.Y.; Peter, V.H.; You, L.Z.; Yang, P.; Tang, H.J. How could agricultural land systems contribute to raise food production under global change. J. Integr. Agric. 2014, 13, 1432-1442
    • (2014) J. Integr. Agric , vol.13 , pp. 1432-1442
    • Wu, W.B.1    Yu, Q.Y.2    Peter, V.H.3    You, L.Z.4    Yang, P.5    Tang, H.J.6
  • 6
    • 84945902495 scopus 로고    scopus 로고
    • In-season mapping of crop type with optical and x-band sar data: A classification tree approach using synoptic seasonal features
    • Villa, P.; Stroppiana, D.; Fontanelli, G.; Azar, R.; Brivio, P. In-season mapping of crop type with optical and x-band sar data: A classification tree approach using synoptic seasonal features. Remote Sens. 2015, 7, 12859-12886
    • (2015) Remote Sens , vol.7 , pp. 12859-12886
    • Villa, P.1    Stroppiana, D.2    Fontanelli, G.3    Azar, R.4    Brivio, P.5
  • 7
    • 84941562954 scopus 로고    scopus 로고
    • Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data
    • Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255-269
    • (2015) Remote Sens. Environ , vol.169 , pp. 255-269
    • Kontgis, C.1    Schneider, A.2    Ozdogan, M.3
  • 9
    • 84860390491 scopus 로고    scopus 로고
    • Per-field irrigated crop classification in arid central Asia using SPOT and ASTER data
    • Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid central Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035-1056
    • (2010) Remote Sens , vol.2 , pp. 1035-1056
    • Conrad, C.1    Fritsch, S.2    Zeidler, J.3    Rücker, G.4    Dech, S.5
  • 11
    • 85007347969 scopus 로고    scopus 로고
    • Object-based paddy rice mapping using Hj-1A/B data and temporal features extracted from time series MODIS NDVI data
    • Singha, M.;Wu, B.F.; Zhang, M. Object-based paddy rice mapping using Hj-1A/B data and temporal features extracted from time series MODIS NDVI data. Sensors 2017, 17, 10
    • (2017) Sensors , vol.17 , pp. 10
    • Singha, M.1    Wu, B.F.2    Zhang, M.3
  • 13
    • 84862796316 scopus 로고    scopus 로고
    • Winter wheat area estimate from MODIS-EVI time series using the crop proportion phenology index
    • Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimate from MODIS-EVI time series using the crop proportion phenology index. Remote Sens. Environ. 2012, 119, 232-242
    • (2012) Remote Sens. Environ , vol.119 , pp. 232-242
    • Pan, Y.1    Li, L.2    Zhang, J.3    Liang, S.4    Zhu, X.5    Sulla-Menashe, D.6
  • 14
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301-1316
    • (2011) Remote Sens. Environ , vol.115 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 15
    • 84930031792 scopus 로고    scopus 로고
    • Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data
    • Fan, H.; Fu, X.; Zhang, Z.; Wu, Q. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 2015, 7, 6041-6058
    • (2015) Remote Sens , vol.7 , pp. 6041-6058
    • Fan, H.1    Fu, X.2    Zhang, Z.3    Wu, Q.4
  • 17
    • 84887533828 scopus 로고    scopus 로고
    • An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data
    • Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data. Remote Sens. 2013, 5, 5346-5368
    • (2013) Remote Sens , vol.5 , pp. 5346-5368
    • Zhang, W.1    Li, A.2    Jin, H.3    Bian, J.4    Zhang, Z.5    Lei, G.6    Qin, Z.7    Huang, C.8
  • 18
    • 85012305773 scopus 로고    scopus 로고
    • How do temporal and spectral features matter in crop classification
    • Hu, Q.;Wu, W.; Song, Q.; Lu, M.; Chen, D.; Yu, Q.; Tang, H. How do temporal and spectral features matter in crop classification. J. Integr. Agric. 2017, 16, 324-336
    • (2017) J. Integr. Agric , vol.16 , pp. 324-336
    • Hu, Q.1    Wu, W.2    Song, Q.3    Lu, M.4    Chen, D.5    Yu, Q.6    Tang, H.7
  • 19
    • 84962488348 scopus 로고    scopus 로고
    • First experience with Sentinel-2 data for crop and tree species classifications in central Europe
    • Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166
    • (2016) Remote Sens , vol.8 , pp. 166
    • Immitzer, M.1    Vuolo, F.2    Atzberger, C.3
  • 20
    • 85019387338 scopus 로고    scopus 로고
    • Mapping rice fields in urban Shanghai, Southeast China, using Sentinel-1a and Landsat 8 datasets
    • Mansaray, L.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping rice fields in urban Shanghai, Southeast China, using Sentinel-1a and Landsat 8 datasets. Remote Sens. 2017, 9, 257
    • (2017) Remote Sens , vol.9 , pp. 257
    • Mansaray, L.1    Huang, W.2    Zhang, D.3    Huang, J.4    Li, J.5
  • 22
    • 85012293517 scopus 로고    scopus 로고
    • Mapping regional cropping patterns by using GF-1 WFV sensor data
    • Song, Q.; Zhou, Q.; Wu, W.; Hu, Q.; Lu, M.; Liu, S. Mapping regional cropping patterns by using GF-1 WFV sensor data. J. Integr. Agric. 2017, 16, 337-347
    • (2017) J. Integr. Agric , vol.16 , pp. 337-347
    • Song, Q.1    Zhou, Q.2    Wu, W.3    Hu, Q.4    Lu, M.5    Liu, S.6
  • 23
    • 85019670935 scopus 로고    scopus 로고
    • Land cover classification based on fused data from GF-1 and MODIS NDVI time series
    • Kong, F.; Li, X.; Wang, H.; Xie, D.; Li, X.; Bai, Y. Land cover classification based on fused data from GF-1 and MODIS NDVI time series. Remote Sens. 2016, 8, 741
    • (2016) Remote Sens , vol.8 , pp. 741
    • Kong, F.1    Li, X.2    Wang, H.3    Xie, D.4    Li, X.5    Bai, Y.6
  • 25
    • 85019381440 scopus 로고    scopus 로고
    • A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM)
    • Lebourgeois, V.; Dupuy, S.; Vintrou, é.; Ameline, M.; Butler, S.; Bégué, A. A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM). Remote Sens. 2017, 9, 259
    • (2017) Remote Sens , vol.9 , pp. 259
    • Lebourgeois, V.1    Dupuy, S.2    Vintrou, É.3    Ameline, M.4    Butler, S.5    Bégué, A.6
  • 26
    • 84997327221 scopus 로고    scopus 로고
    • Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring
    • Wu, M.; Zhang, X.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring. Remote Sens. 2015, 7, 16293-16314
    • (2015) Remote Sens , vol.7 , pp. 16293-16314
    • Wu, M.1    Zhang, X.2    Huang, W.3    Niu, Z.4    Wang, C.5    Li, W.6    Hao, P.7
  • 27
    • 84904670452 scopus 로고    scopus 로고
    • Exploring the use of google earth imagery and object-based methods in land use/cover mapping
    • Hu, Q.; Wu, W.B.; Xia, T.; Yu, Q.Y.; Yang, P.; Li, Z.G.; Song, Q. Exploring the use of google earth imagery and object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026-6042
    • (2013) Remote Sens , vol.5 , pp. 6026-6042
    • Hu, Q.1    Wu, W.B.2    Xia, T.3    Yu, Q.Y.4    Yang, P.5    Li, Z.G.6    Song, Q.7
  • 28
    • 84987748851 scopus 로고    scopus 로고
    • Object-based crop classification with Landsat-MODIS enhanced time-series data
    • Li, Q.;Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens. 2015, 7, 16091-16107
    • (2015) Remote Sens , vol.7 , pp. 16091-16107
    • Li, Q.1    Wang, C.2    Zhang, B.3    Lu, L.4
  • 29
    • 84892975526 scopus 로고    scopus 로고
    • Combining per-pixel and object-based classifications for mapping land cover over large areas
    • Costa, H.; Carrão, H.; Bação, F.; Caetano, M. Combining per-pixel and object-based classifications for mapping land cover over large areas. Int. J. Remote Sens. 2014, 35, 738-753
    • (2014) Int. J. Remote Sens , vol.35 , pp. 738-753
    • Costa, H.1    Carrão, H.2    Bação, F.3    Caetano, M.4
  • 30
    • 84893969046 scopus 로고    scopus 로고
    • Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping
    • Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126-1142
    • (2014) Int. J. Remote Sens , vol.35 , pp. 1126-1142
    • Han, N.1    Du, H.2    Zhou, G.3    Sun, X.4    Ge, H.5    Xu, X.6
  • 32
    • 84857699514 scopus 로고    scopus 로고
    • Fusion of textural and spectral information for tree crop and other agricultural cover mapping with very-high resolution satellite images
    • Ursani, A.A.; Kpalma, K.; Lelong, C.C.D.; Ronsin, J. Fusion of textural and spectral information for tree crop and other agricultural cover mapping with very-high resolution satellite images. IEEE J. Sel. Top. Appl. Earth Obs. 2012, 5, 225-235
    • (2012) IEEE J. Sel. Top. Appl. Earth Obs , vol.5 , pp. 225-235
    • Ursani, A.A.1    Kpalma, K.2    Lelong, C.C.D.3    Ronsin, J.4
  • 33
    • 85040417134 scopus 로고    scopus 로고
    • Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a random forest classifier
    • Zhang, H.X.; Li, Q.Z.; Liu, J.G.; Du, X.; Dong, T.F.; McNairn, H.; Champagne., C.; Liu, M.X.; Shang, J.L. Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a random forest classifier. Geocarto Int. 2017, 1-19
    • (2017) Geocarto Int , pp. 1-19
    • Zhang, H.X.1    Li, Q.Z.2    Liu, J.G.3    Du, X.4    Dong, T.F.5    McNairn, H.6    Champagne, C.7    Liu, M.X.8    Shang, J.L.9
  • 34
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 35
    • 40349110669 scopus 로고    scopus 로고
    • Crop classification by support vector machine with intelligently selected training data for an operational application
    • Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29, 2227-2240
    • (2008) Int. J. Remote Sens , vol.29 , pp. 2227-2240
    • Mathur, A.1    Foody, G.M.2
  • 36
    • 84931270718 scopus 로고    scopus 로고
    • Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data
    • Tatsumi, K.; Yamashiki, Y.; Canales Torres, M.A.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171-179
    • (2015) Comput. Electron. Agric , vol.115 , pp. 171-179
    • Tatsumi, K.1    Yamashiki, Y.2    Canales Torres, M.A.3    Taipe, C.L.R.4
  • 37
    • 84870344269 scopus 로고    scopus 로고
    • Evaluation of random forest method for agricultural crop classification
    • Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2012, 45, 421-432
    • (2012) Eur. J. Remote Sens , vol.45 , pp. 421-432
    • Ok, A.O.1    Akar, O.2    Gungor, O.3
  • 38
    • 85034763627 scopus 로고    scopus 로고
    • Using vegetation indices as input into random forest for soybean and weed classification
    • Fletcher, R.S. Using vegetation indices as input into random forest for soybean and weed classification. Am. J. Plant Sci. 2016, 7, 2186-2198
    • (2016) Am. J. Plant Sci , vol.7 , pp. 2186-2198
    • Fletcher, R.S.1
  • 39
    • 85051626154 scopus 로고    scopus 로고
    • Parameter tuning in the support vector machine and random forest and their performances in cross-and same-year crop classification using TerraSAR-X
    • Sonobe, R.; Tani, H.;Wang, X.; Kobayashi, N.; Shimamura, H. Parameter tuning in the support vector machine and random forest and their performances in cross-and same-year crop classification using TerraSAR-X. Int. J. Remote Sens. 2012, 35, 260-267
    • (2012) Int. J. Remote Sens , vol.35 , pp. 260-267
    • Sonobe, R.1    Tani, H.2    Wang, X.3    Kobayashi, N.4    Shimamura, H.5
  • 40
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272
    • (2012) Remote Sens. Environ , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 41
    • 84856982478 scopus 로고    scopus 로고
    • Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502-4526
    • (2012) Int. J. Remote Sens , vol.33 , pp. 4502-4526
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 42
    • 84861335868 scopus 로고    scopus 로고
    • Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas
    • Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553-562
    • (2012) Remote Sens. Environ , vol.123 , pp. 553-562
    • Vieira, M.A.1    Formaggio, A.R.2    Rennó, C.D.3    Atzberger, C.4    Aguiar, D.A.5    Mello, M.P.6
  • 44
    • 85034732799 scopus 로고    scopus 로고
    • accessed on 17 December 2014
    • China Centre for Resources Satellite Data and Application. Available online: http://www.cresda.com/CN/(accessed on 17 December 2014)
  • 45
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
    • Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. J. Photogramm. Remote Sens. 2000, 58, 12-23
    • (2000) J. Photogramm. Remote Sens , vol.58 , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 46
    • 36849090769 scopus 로고    scopus 로고
    • Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas
    • Mathieu, R.; Aryal, J.; Chong, A.K. Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas. Sensors 2007, 7, 2860-2880
    • (2007) Sensors , vol.7 , pp. 2860-2880
    • Mathieu, R.1    Aryal, J.2    Chong, A.K.3
  • 47
    • 77951189897 scopus 로고    scopus 로고
    • ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
    • Drăguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859-871
    • (2010) Int. J. Geogr. Inf. Sci , vol.24 , pp. 859-871
    • Drăguţ, L.1    Tiede, D.2    Levick, S.R.3
  • 48
    • 84880109631 scopus 로고    scopus 로고
    • Crop classification using HJ satellite multispectral data in the North China Plain
    • Jia, K.;Wu, B.; Li, Q. Crop classification using HJ satellite multispectral data in the North China Plain. J. Appl. Remote Sens. 2013, 7, 073576
    • (2013) J. Appl. Remote Sens , vol.7
    • Jia, K.1    Wu, B.2    Li, Q.3
  • 49
    • 84884264508 scopus 로고    scopus 로고
    • Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
    • Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1-13
    • (2014) Remote Sens. Environ , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 50
    • 84879170574 scopus 로고    scopus 로고
    • Classification of crops using FCM segmentation and texture, color feature
    • Patil, A.; Lalitha, Y.S. Classification of crops using FCM segmentation and texture, color feature. Int. J. Adv. Res. Comput. Commun. Eng. 2012, 1, 371-377
    • (2012) Int. J. Adv. Res. Comput. Commun. Eng , vol.1 , pp. 371-377
    • Patil, A.1    Lalitha, Y.S.2
  • 51
    • 84928796485 scopus 로고    scopus 로고
    • Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using Random Forests
    • Gao, T.; Zhu, J.; Zheng, X.; Shang, G.; Huang, L.;Wu, S. Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using Random Forests. Remote Sens. 2015, 7, 1702-1720
    • (2015) Remote Sens , vol.7 , pp. 1702-1720
    • Gao, T.1    Zhu, J.2    Zheng, X.3    Shang, G.4    Huang, L.5    Wu, S.6
  • 52
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156-168
    • (2016) Remote Sens. Environ , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 53
    • 84948822820 scopus 로고    scopus 로고
    • Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile
    • Peña, M.A.; Brenning, A. Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile. Remote Sens. Environ. 2015, 171, 234-244
    • (2015) Remote Sens. Environ , vol.171 , pp. 234-244
    • Peña, M.A.1    Brenning, A.2
  • 54
    • 84872776258 scopus 로고    scopus 로고
    • Random forests as a tool for estimating uncertainty at pixel-level in SAR image classification
    • Loosvelt, L.; Peters, J.; Skriver, H.; Lievens, H.; Coillie, F. Random forests as a tool for estimating uncertainty at pixel-level in SAR image classification. Int. J. Appl. Earth Obs. 2012, 19, 173-184
    • (2012) Int. J. Appl. Earth Obs , vol.19 , pp. 173-184
    • Loosvelt, L.1    Peters, J.2    Skriver, H.3    Lievens, H.4    Coillie, F.5
  • 57
    • 84864067444 scopus 로고    scopus 로고
    • Spatio-temporal reasoning for the classification of satellite image time series
    • Petitjean, F.; Kurtz, C.; Passat, N.; Arski, P.G. Spatio-temporal reasoning for the classification of satellite image time series. Pattern Recogn. Lett. 2012, 33, 1805-1815
    • (2012) Pattern Recogn. Lett , vol.33 , pp. 1805-1815
    • Petitjean, F.1    Kurtz, C.2    Passat, N.3    Arski, P.G.4
  • 58
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1-13
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 59
    • 84893445992 scopus 로고    scopus 로고
    • Automated crop field extraction from multi-temporal web enabled Landsat data
    • Yan, L.; Roy, D.P. Automated crop field extraction from multi-temporal web enabled Landsat data. Remote Sens. Environ. 2014, 114, 42-64
    • (2014) Remote Sens. Environ , vol.114 , pp. 42-64
    • Yan, L.1    Roy, D.P.2
  • 60
    • 85028358022 scopus 로고    scopus 로고
    • On the objectivity of the objective function-problems with unsupervised segmentation evaluation based on global score and a possible remedy
    • Böck, S.; Immitzer, M.; Atzberger, C. On the objectivity of the objective function-problems with unsupervised segmentation evaluation based on global score and a possible remedy. Remote Sens. 2017, 9, 769
    • (2017) Remote Sens , vol.9 , pp. 769
    • Böck, S.1    Immitzer, M.2    Atzberger, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.