메뉴 건너뛰기




Volumn 2, Issue JAN, 2016, Pages

A taxonomy of deep convolutional neural nets for computer vision

Author keywords

Convolutional neural networks; Deep learning; Object classification; Recurrent neural networks; Supervised learning

Indexed keywords


EID: 85034742569     PISSN: None     EISSN: 22969144     Source Type: Journal    
DOI: 10.3389/frobt.2015.00036     Document Type: Article
Times cited : (175)

References (117)
  • 2
    • 84937961091 scopus 로고    scopus 로고
    • 'Do deep nets really need to be deep?,'
    • eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Curran Associates, Inc.)
    • Ba, J., and Caruana, R. (2014). "Do deep nets really need to be deep?," in Advances in Neural Information Processing Systems 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Curran Associates, Inc.), 2654-2662
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 2654-2662
    • Ba, J.1    Caruana, R.2
  • 5
    • 1542285823 scopus 로고    scopus 로고
    • Lucas-kanade 20 years on: a unifying framework
    • Baker, S., and Matthews, I. (2004). Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56, 221-255. doi: 10.1023/B:VISI.0000011205.11775.fd
    • (2004) Int. J. Comput. Vis , vol.56 , pp. 221-255
    • Baker, S.1    Matthews, I.2
  • 6
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y. (2009). Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1-127. doi:10.1561/2200000006
    • (2009) Found. Trends Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 17
    • 84898971588 scopus 로고    scopus 로고
    • 'Predicting parameters in deep learning,'
    • eds C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger (Curran Associates, Inc.)
    • Denil, M., Shakibi, B., Dinh, L., Ranzato, M. A., and de Freitas, N. (2013). "Predicting parameters in deep learning," in Advances in Neural Information Processing Systems 26, eds C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger (Curran Associates, Inc.), 2148-2156
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 2148-2156
    • Denil, M.1    Shakibi, B.2    Dinh, L.3    Ranzato, M.A.4    de Freitas, N.5
  • 21
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 24
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193-202. doi:10.1007/BF00344251
    • (1980) Biol. Cybern , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 28
    • 84959196122 scopus 로고    scopus 로고
    • "Finding action tubes,"
    • Gkioxari, G., and Malik, J. (2015). "Finding action tubes," in CVPR
    • (2015) CVPR
    • Gkioxari, G.1    Malik, J.2
  • 29
    • 84906352772 scopus 로고    scopus 로고
    • "Multi-scale orderless pooling of deep convolutional activation features,"
    • (Springer International Publishing)
    • Gong, Y., Wang, L., Guo, R., and Lazebnik, S. (2014a). "Multi-scale orderless pooling of deep convolutional activation features," in Computer Vision-ECCV 2014 (Springer International Publishing), 392-407
    • (2014) Computer Vision-ECCV 2014 , pp. 392-407
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 30
    • 84906352772 scopus 로고    scopus 로고
    • "Multi-scale orderless pooling of deep convolutional activation features,"
    • (Springer International Publishing)
    • Gong, Y., Wang, L., Guo, R., and Lazebnik, S. (2014b). "Multi-scale orderless pooling of deep convolutional activation features," in Computer Vision-ECCV 2014 (Springer International Publishing), 392-407
    • (2014) Computer Vision-ECCV 2014 , pp. 392-407
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 36
    • 84922645579 scopus 로고    scopus 로고
    • Learning Rich Features from RGB-D Images for Object Detection and Segmentation
    • Gupta, S., Girshick, R., Arbelaez, P., and Malik, J. (2014). Learning Rich Features from RGB-D Images for Object Detection and Segmentation
    • (2014)
    • Gupta, S.1    Girshick, R.2    Arbelaez, P.3    Malik, J.4
  • 40
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800. doi:10.1162/089976602760128018
    • (2002) Neural Comput , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 41
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554. doi:10.1162/neco.2006.18.7.1527
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 43
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9, 1735-1780. doi:10.1162/neco.1997.9.8.1735
    • (1997) Neural Comput , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 44
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251-257. doi:10.1016/0893-6080(91)90009-T
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Hornik, K.1
  • 45
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106. doi:10.1113/jphysiol.1962.sp006837
    • (1962) J. Physiol , vol.160 , pp. 106
    • Hubel, D.H.1    Wiesel, T.N.2
  • 50
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Ji, S., Xu, W., Yang, M., and Yu, K. (2010). 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221-231. doi:10.1109/TPAMI.2012.59
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 55
    • 84876231242 scopus 로고    scopus 로고
    • 'Imagenet classification with deep convolutional neural networks,'
    • eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Curran Associates, Inc.)
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems 25, eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Curran Associates, Inc.), 1097-1105
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 59
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436-444. doi:10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 60
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324. doi:10.1109/5.726791
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 61
    • 84939885143 scopus 로고    scopus 로고
    • Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network
    • Li, S., Liu, Z.-Q., and Chan, A. (2015a). Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network. Int. J. Comput. Vis. 113, 19-36. doi:10.1007/s11263-014-0767-8
    • (2015) Int. J. Comput. Vis , vol.113 , pp. 19-36
    • Li, S.1    Liu, Z.-Q.2    Chan, A.3
  • 65
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91-110. doi:10.1023/B:VISI.0000029664.99615.94
    • (2004) Int. J. Comput. Vis , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 66
    • 84893676344 scopus 로고    scopus 로고
    • 'Rectifier nonlinearities improve neural network acoustic models,'
    • Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). "Rectifier nonlinearities improve neural network acoustic models," in Proc. ICML, Vol. 30
    • (2013) Proc. ICML , vol.30
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 72
    • 34548480020 scopus 로고
    • 'A method of solving a convex programming problem with convergence rate o (1/k2),'
    • Nesterov, Y. (1983). "A method of solving a convex programming problem with convergence rate o (1/k2)," in Soviet Mathematics Doklady, Vol. 27, 372-376
    • (1983) Soviet Mathematics Doklady , vol.27 , pp. 372-376
    • Nesterov, Y.1
  • 75
    • 50549197532 scopus 로고
    • Some methods of speeding up the convergence of iteration methods
    • Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4, 1-17. doi:10.1016/0041-5553(64)90137-5
    • (1964) USSR Comput. Math. Math. Phys , vol.4 , pp. 1-17
    • Polyak, B.T.1
  • 79
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations by back-propagating errors. Cogn. Model. 5, 3
    • (1988) Cogn. Model , vol.5 , pp. 3
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 81
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Netw. 61, 85-117. doi:10.1016/j.neunet.2014.09.003
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 85
    • 84937862424 scopus 로고    scopus 로고
    • 'Two-stream convolutional networks for action recognition in videos,'
    • eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger
    • Simonyan, K., and Zisserman, A. (2014a). "Two-stream convolutional networks for action recognition in videos," in Advances in Neural Information Processing Systems 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger 568-576
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 87
    • 84869201485 scopus 로고    scopus 로고
    • 'Practical bayesian optimization of machine learning algorithms,'
    • eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Curran Associates, Inc.)
    • Snoek, J., Larochelle, H., and Adams, R. P. (2012). "Practical bayesian optimization of machine learning algorithms," in Advances in Neural Information Processing Systems, 25, eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Curran Associates, Inc.), 2951-2959
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 88
    • 84877789646 scopus 로고    scopus 로고
    • 'Convolutional-recursive deep learning for 3d object classification,'
    • eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger
    • Socher, R., Huval, B., Bath, B., Manning, C. D., and Ng, A. Y. (2012). "Convolutional-recursive deep learning for 3d object classification," in Advances in Neural Information Processing Systems 25, eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger, 656-664
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 656-664
    • Socher, R.1    Huval, B.2    Bath, B.3    Manning, C.D.4    Ng, A.Y.5
  • 89
    • 84965123123 scopus 로고    scopus 로고
    • 'Data-free parameter pruning for deep neural networks,'
    • eds M. W. J. Xianghua Xie and G. K. L. Tam (BMVA Press)
    • Srinivas, S., and Babu, R. V. (2015). "Data-free parameter pruning for deep neural networks," in Proceedings of the British Machine Vision Conference (BMVC), eds M. W. J. Xianghua Xie and G. K. L. Tam (BMVA Press), 31.1-31.12
    • (2015) Proceedings of the British Machine Vision Conference (BMVC)
    • Srinivas, S.1    Babu, R.V.2
  • 95
    • 0028481440 scopus 로고
    • Original approach for the localisation of objects in images
    • Vaillant, R., Monrocq, C., and Le Cun, Y. (1994). Original approach for the localisation of objects in images. IEE Proc. Vision Image Signal Process. 141, 245-250. doi:10.1049/ip-vis:19941301
    • (1994) IEE Proc. Vision Image Signal Process , vol.141 , pp. 245-250
    • Vaillant, R.1    Monrocq, C.2    Le Cun, Y.3
  • 98
    • 84911369162 scopus 로고    scopus 로고
    • "Large-scale optimization of hierarchical features for saliency prediction in natural images,"
    • 2014 (IEEE)
    • Vig, E., Dorr, M., and Cox, D. (2014). "Large-scale optimization of hierarchical features for saliency prediction in natural images," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014 (IEEE), 2798-2805
    • (2014) IEEE Conference on Computer Vision and Pattern Recognitio (CVPR) , pp. 2798-2805
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 99
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 102
  • 105
    • 84955282488 scopus 로고    scopus 로고
    • 'Action recognition with trajectory-pooled deep-convolutional descriptors,'
    • Wang, L., Qiao, Y., and Tang, X. (2015a). "Action recognition with trajectory-pooled deep-convolutional descriptors," in CVPR, 4305-4314
    • (2015) CVPR , pp. 4305-4314
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 111
    • 84937508363 scopus 로고    scopus 로고
    • 'How transferable are features in deep neural networks?,'
    • eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Curran Associates, Inc.)
    • Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). "How transferable are features in deep neural networks?," in Advances in Neural Information Processing Systems, 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Curran Associates, Inc.), 3320-3328
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 113
    • 84906489074 scopus 로고    scopus 로고
    • 'Visualizing and understanding convolutional networks,'
    • eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Springer International Publishing)
    • Zeiler, M., and Fergus, R. (2014). "Visualizing and understanding convolutional networks," in Computer Vision-ECCV 2014, volume 8689 of Lecture Notes in Computer Science, eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Springer International Publishing), 818-833. doi:10.1007/978-3-319-10590-1_53
    • (2014) Computer Vision-ECCV 2014, volume 8689 of Lecture Notes in Computer Science , pp. 818-833
    • Zeiler, M.1    Fergus, R.2
  • 117
    • 84937964578 scopus 로고    scopus 로고
    • 'Learning deep features for scene recognition using places database,'
    • eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Curran Associates, Inc.)
    • Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). "Learning deep features for scene recognition using places database," in Advances in Neural Information Processing Systems 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Curran Associates, Inc.), 487-495
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 487-495
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.