-
2
-
-
75449117929
-
Quantum search algorithms
-
Korepin, V.E., Xu, Y.: Quantum search algorithms. Int. J. Mod. Phys. B 31, 5727–5758 (2009)
-
(2009)
Int. J. Mod. Phys. B
, vol.31
, pp. 5727-5758
-
-
Korepin, V.E.1
Xu, Y.2
-
4
-
-
0942266992
-
Quantum Amplitude Amplification and Estimation
-
Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation. Quantum Comput. Quantum Inf. 305, 53–74 (2000)
-
(2000)
Quantum Comput. Quantum Inf.
, vol.305
, pp. 53-74
-
-
Brassard, G.1
Høyer, P.2
Mosca, M.3
Tapp, A.4
-
6
-
-
0142051871
-
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
-
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484 (1997)
-
(1997)
SIAM J. Sci. Stat. Comput.
, vol.26
, pp. 1484
-
-
Shor, P.W.1
-
8
-
-
4243807288
-
Quantum mechanics helps in searching for a needle in a haystack
-
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 325
-
-
Grover, L.K.1
-
9
-
-
85040488242
-
On quantum algorithms
-
Cleve, R., Ekert, A., Henderson, L., Macchiavello, C., Mosca, M.: On quantum algorithms. Complexity 4, 33 (1998)
-
(1998)
Complexity
, vol.4
, pp. 33
-
-
Cleve, R.1
Ekert, A.2
Henderson, L.3
Macchiavello, C.4
Mosca, M.5
-
10
-
-
0001063035
-
Strengths and weaknesses of quantum computing
-
Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510 (1997)
-
(1997)
SIAM J. Comput.
, vol.26
, Issue.5
, pp. 1510
-
-
Bennett, C.H.1
Bernstein, E.2
Brassard, G.3
Vazirani, U.4
-
11
-
-
0032338939
-
Tight bounds on quantum searching
-
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Frotsch. Phys. 46, 493 (1998)
-
(1998)
Frotsch. Phys.
, vol.46
, pp. 493
-
-
Boyer, M.1
Brassard, G.2
Høyer, P.3
Tapp, A.4
-
12
-
-
0000206762
-
Grover’s quantum searching algorithm is optimal
-
Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746 (1999)
-
(1999)
Phys. Rev. A
, vol.60
, pp. 2746
-
-
Zalka, C.1
-
13
-
-
85034586482
-
-
Las Vegas, Nevada, USA
-
Grover, L.K., Radhakrishnan, J.: ACM Symposium on Parallel Algorithms and Architectures, vol. 186, Las Vegas, Nevada, USA (2005)
-
(2005)
ACM Symposium on Parallel Algorithms and Architectures
, vol.186
-
-
Grover, L.K.1
Radhakrishnan, J.2
-
14
-
-
34748876650
-
Quantum partial search of a database with several target items
-
Choi, B.S., Korepin, V.E.: Quantum partial search of a database with several target items. Quantum Inf. Process. 6, 37 (2007)
-
(2007)
Quantum Inf. Process.
, vol.6
, pp. 37
-
-
Choi, B.S.1
Korepin, V.E.2
-
15
-
-
27144473289
-
Optimization of partial search
-
Korepin, V.E.: Optimization of partial search. J. Phys. A 38, L731 (2005)
-
(2005)
J. Phys. A
, vol.38
, pp. L731
-
-
Korepin, V.E.1
-
16
-
-
33745142604
-
Quest for fast partial search algorithm
-
Korepin, V.E., Liao, J.: Quest for fast partial search algorithm. Quantum Inf. Process. 5, 1573 (2006)
-
(2006)
Quantum Inf. Process.
, vol.5
, pp. 1573
-
-
Korepin, V.E.1
Liao, J.2
-
17
-
-
33847716637
-
Group theoretical formulation of a quantum partial search algorithm
-
Korepin, V.E., Vallilo, B.C.: Group theoretical formulation of a quantum partial search algorithm. Prog. Theor. Phys. 116, 783 (2006)
-
(2006)
Prog. Theor. Phys.
, vol.116
, pp. 783
-
-
Korepin, V.E.1
Vallilo, B.C.2
-
20
-
-
4243643113
-
Quantum computers can search rapidly by using almost any transformation
-
Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4329-4332
-
-
Grover, L.K.1
-
22
-
-
0033197442
-
Quantum search on structured problems
-
Grover, L.K.: Quantum search on structured problems. Chaos Solitons Fractals 10, 16951705 (1999)
-
(1999)
Chaos Solitons Fractals
, vol.10
, pp. 16951705
-
-
Grover, L.K.1
-
24
-
-
0035435437
-
Grover algorithm with zero theoretical failure rate
-
Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)
-
(2001)
Phys. Rev. A
, vol.64
, pp. 022307
-
-
Long, G.L.1
-
25
-
-
84876501226
-
Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters
-
Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12, 1897–1914 (2013)
-
(2013)
Quantum Inf. Process.
, vol.12
, pp. 1897-1914
-
-
Toyama, F.M.1
van Dijk, W.2
Nogami, Y.3
-
27
-
-
0003872744
-
-
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.
-
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv: quant-ph/0001106
-
Quantum Computation by Adiabatic Evolution
-
-
-
28
-
-
0036542418
-
Quantum search by local adiabatic evolution
-
Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)
-
(2002)
Phys. Rev. A
, vol.65
, pp. 042308
-
-
Roland, J.1
Cerf, N.J.2
-
29
-
-
33846622707
-
Sure success partial search
-
Choi, B.-S., Walker, T.A., Braunstein, S.L.: Sure success partial search. Quantum Inf. Process. 6, 1–8 (2007)
-
(2007)
Quantum Inf. Process.
, vol.6
, pp. 1-8
-
-
Choi, B.-S.1
Walker, T.A.2
Braunstein, S.L.3
|