메뉴 건너뛰기




Volumn 42, Issue 3W3, 2017, Pages 165-170

Visible, very near IR and short wave IR hyperspectral drone imaging system for agriculture and natural water applicationS

Author keywords

Drone; Fabry Perot; Forage quality estimation; Hyperspectral imaging; Microspectrometers; Water quality monitoring

Indexed keywords

ALUMINUM; CAMERAS; DRONES; FABRY-PEROT INTERFEROMETERS; IMAGING SYSTEMS; INFRARED DEVICES; INFRARED RADIATION; KNOWLEDGE BASED SYSTEMS; REMOTE SENSING; SPECTROSCOPY; TARGET DRONES; TRACTORS (TRUCK); UNMANNED AERIAL VEHICLES (UAV); WATER QUALITY;

EID: 85033695775     PISSN: 16821750     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5194/isprs-archives-XLII-3-W3-165-2017     Document Type: Conference Paper
Times cited : (26)

References (8)
  • 1
    • 78650099621 scopus 로고    scopus 로고
    • Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for the estimating pasture mass and quality in a mixed sown pasture using partial squares regression
    • Kawamura, K., Watanabe, N., Sakanoue S., Lee, H.J., Inoue Y and Odagawa, S., 2010. Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for the estimating pasture mass and quality in a mixed sown pasture using partial squares regression. Grassl. Sci 56:205-216.
    • (2010) Grassl. Sci , vol.56 , pp. 205-216
    • Kawamura, K.1    Watanabe, N.2    Sakanoue, S.3    Lee, H.J.4    Inoue, Y.5    Odagawa, S.6
  • 2
    • 0036274669 scopus 로고    scopus 로고
    • Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterisation
    • Thenkabail, P., Smith, R., and Depauw, E., 2002. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterisation. Photogrammetric Engineering and Remote Sensing 68, pp. 607 - 621.
    • (2002) Photogrammetric Engineering and Remote Sensing , vol.68 , pp. 607-621
    • Thenkabail, P.1    Smith, R.2    Depauw, E.3
  • 6
    • 85033698225 scopus 로고    scopus 로고
    • downloaded 18.5.2017
    • Spectral Engines Ltd. 2017. https://www.spectralengines.com/images/files/spectral_engines_nseries_2017_product_brochure. pdf, downloaded 18.5.2017.
    • (2017)
  • 7
    • 2942702253 scopus 로고    scopus 로고
    • Prediction of indigestible cell wall fractions of grass silage by near infrared reflectance spectroscopy
    • Nousiainen, J., S. Ahvenjärvi, M. Rinne, M. Hellämäki, and P. Huhtanen. 2004. Prediction of indigestible cell wall fractions of grass silage by near infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 115:295-311.
    • (2004) Anim. Feed Sci. Technol. , vol.115 , pp. 295-311
    • Nousiainen, J.1    Ahvenjärvi, S.2    Rinne, M.3    Hellämäki, M.4    Huhtanen, P.5
  • 8
    • 85033730083 scopus 로고    scopus 로고
    • file service of open data, colour orthophoto, CC BY 4.0 license, retrieved 30.8
    • National Land Survey of Finland, file service of open data, colour orthophoto, CC BY 4.0 license, retrieved 30.8.2017.
    • (2017) National Land Survey of Finland


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.