메뉴 건너뛰기




Volumn 44, Issue 21, 2017, Pages 11,030-11,039

Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network

Author keywords

deep learning; hindcasting; LSTM; remote sensing; SMAP; soil moisture

Indexed keywords

DEEP LEARNING; LONG SHORT-TERM MEMORY; MEAN SQUARE ERROR; MOISTURE; REMOTE SENSING; SOIL MOISTURE; SOILS; WEATHER FORECASTING;

EID: 85033488135     PISSN: 00948276     EISSN: 19448007     Source Type: Journal    
DOI: 10.1002/2017GL075619     Document Type: Article
Times cited : (226)

References (36)
  • 1
    • 84951879294 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
    • Bai, Y., Chen, Z., Xie, J., & Li, C. (2016). Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. Journal of Hydrology, 532, 193–206. https://doi.org/10.1016/J.JHYDROL.2015.11.011
    • (2016) Journal of Hydrology , vol.532 , pp. 193-206
    • Bai, Y.1    Chen, Z.2    Xie, J.3    Li, C.4
  • 4
    • 85010756628 scopus 로고    scopus 로고
    • Validation of SMAP surface soil moisture products with core validation sites
    • Colliander, A., Jackson, T., Bindlish, R., Chan, S., Das, N., Kim, S.,…Yueh, S. (2017). Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191, 215–231. https://doi.org/10.1016/j.rse.2017.01.021
    • (2017) Remote Sensing of Environment , vol.191 , pp. 215-231
    • Colliander, A.1    Jackson, T.2    Bindlish, R.3    Chan, S.4    Das, N.5    Kim, S.6    Yueh, S.7
  • 5
    • 84963623629 scopus 로고    scopus 로고
    • Confronting weather and climate models with observational data from soil moisture networks over the United States
    • Dirmeyer, P. A., Wu, J., Norton, H. E., Dorigo, W. A., Quiring, S. M., Ford, T. W.,…Lawrence, D. M. (2016). Confronting weather and climate models with observational data from soil moisture networks over the United States. Journal of Hydrometeorology, 17(4), 1049–1067. https://doi.org/10.1175/JHM-D-15-0196.1
    • (2016) Journal of Hydrometeorology , vol.17 , Issue.4 , pp. 1049-1067
    • Dirmeyer, P.A.1    Wu, J.2    Norton, H.E.3    Dorigo, W.A.4    Quiring, S.M.5    Ford, T.W.6    Lawrence, D.M.7
  • 6
    • 1442314273 scopus 로고    scopus 로고
    • Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model
    • Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,…Tarpley, J. D. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research, 108(D22), 8851. https://doi.org/10.1029/2002JD003296
    • (2003) Journal of Geophysical Research , vol.108 , Issue.D22
    • Ek, M.B.1    Mitchell, K.E.2    Lin, Y.3    Rogers, E.4    Grunmann, P.5    Koren, V.6    Tarpley, J.D.7
  • 8
    • 85030170711 scopus 로고    scopus 로고
    • Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US
    • Fang, K., & Shen, C. (2017). Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US. Water Resources Research, 53(9), 8064–8083. https://doi.org/10.1002/2016WR020283
    • (2017) Water Resources Research , vol.53 , Issue.9 , pp. 8064-8083
    • Fang, K.1    Shen, C.2
  • 9
    • 84979752724 scopus 로고    scopus 로고
    • Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE
    • Fang, K., Shen, C., Fisher, J. B., & Niu, J. (2016). Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE. Water Resources Research, 52, 5537–5554. https://doi.org/10.1002/2016WR018748
    • (2016) Water Resources Research , vol.52 , pp. 5537-5554
    • Fang, K.1    Shen, C.2    Fisher, J.B.3    Niu, J.4
  • 14
    • 4143112257 scopus 로고    scopus 로고
    • Regions of strong coupling between soil moisture and precipitation
    • Koster, R. D. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138–1140. https://doi.org/10.1126/science.1100217
    • (2004) Science , vol.305 , Issue.5687 , pp. 1138-1140
    • Koster, R.D.1
  • 15
    • 0028668781 scopus 로고
    • The components of a ‘SVAT’ scheme and their effects on a GCM's hydrological cycle
    • Koster, R. D., & Suarez, M. J. (1994). The components of a ‘SVAT’ scheme and their effects on a GCM's hydrological cycle. Advances in Water Resources, 17(1-2), 61–78. https://doi.org/10.1016/0309-1708(94)90024-8
    • (1994) Advances in Water Resources , vol.17 , Issue.1-2 , pp. 61-78
    • Koster, R.D.1    Suarez, M.J.2
  • 16
    • 0034535097 scopus 로고    scopus 로고
    • A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure
    • Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. Journal of Geophysical Research, 105(D20), 24,809–24,822. https://doi.org/10.1029/2000JD900327
    • (2000) Journal of Geophysical Research , vol.105 , Issue.D20 , pp. 24,809-24,822
    • Koster, R.D.1    Suarez, M.J.2    Ducharne, A.3    Stieglitz, M.4    Kumar, P.5
  • 17
    • 85021338418 scopus 로고    scopus 로고
    • A data-driven approach for daily real-time estimates and forecasts of near-surface soil moisture
    • Koster, R. D., Reichle, R. H., Mahanama, S. P. P., Koster, R. D., Reichle, R. H., & Mahanama, S. P. P. (2017). A data-driven approach for daily real-time estimates and forecasts of near-surface soil moisture. Journal of Hydrometeorology, 18, 837–843. https://doi.org/10.1175/JHM-D-16-0285.1
    • (2017) Journal of Hydrometeorology , vol.18 , pp. 837-843
    • Koster, R.D.1    Reichle, R.H.2    Mahanama, S.P.P.3    Koster, R.D.4    Reichle, R.H.5    Mahanama, S.P.P.6
  • 19
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 20
    • 85035113315 scopus 로고    scopus 로고
    • An evaluation of the North American regional reanalysis simulated soil moisture conditions during the 2011–13 drought period
    • Leeper, R. D., Bell, J. E., Vines, C., Palecki, M., Leeper, R. D., Bell, J. E.,…Palecki, M. (2017). An evaluation of the North American regional reanalysis simulated soil moisture conditions during the 2011–13 drought period. Journal of Hydrometeorology, 18(2), 515–527. https://doi.org/10.1175/JHM-D-16-0132.1
    • (2017) Journal of Hydrometeorology , vol.18 , Issue.2 , pp. 515-527
    • Leeper, R.D.1    Bell, J.E.2    Vines, C.3    Palecki, M.4    Leeper, R.D.5    Bell, J.E.6    Palecki, M.7
  • 23
    • 84958958058 scopus 로고    scopus 로고
    • Regional soil moisture biases and their influence on WRF model temperature forecasts over the intermountain west
    • Massey, J. D., Steenburgh, W. J., Knievel, J. C., Cheng, W. Y. Y., Massey, J. D., Steenburgh, W. J.,…Cheng, W. Y. Y. (2016). Regional soil moisture biases and their influence on WRF model temperature forecasts over the intermountain west. Weather and Forecasting, 31(1), 197–216. https://doi.org/10.1175/WAF-D-15-0073.1
    • (2016) Weather and Forecasting , vol.31 , Issue.1 , pp. 197-216
    • Massey, J.D.1    Steenburgh, W.J.2    Knievel, J.C.3    Cheng, W.Y.Y.4    Massey, J.D.5    Steenburgh, W.J.6    Cheng, W.Y.Y.7
  • 24
    • 28844487913 scopus 로고    scopus 로고
    • Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring
    • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1-4), 69–88. https://doi.org/10.1016/j.agrformet.2005.07.012
    • (2005) Agricultural and Forest Meteorology , vol.133 , Issue.1-4 , pp. 69-88
    • Narasimhan, B.1    Srinivasan, R.2
  • 25
    • 0035872004 scopus 로고    scopus 로고
    • Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93
    • Nijssen, B., Schnur, R., & Lettenmaier, D. P. (2001). Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. Journal of Climate, 14(8), 1790–1808. https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
    • (2001) Journal of Climate , vol.14 , Issue.8 , pp. 1790-1808
    • Nijssen, B.1    Schnur, R.2    Lettenmaier, D.P.3
  • 26
    • 84954358235 scopus 로고    scopus 로고
    • Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins
    • Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., & Anquetin, S. (2008). Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. Journal of Hydrology, 362, 274–290. https://doi.org/10.1016/j.jhydrol.2008.08.023
    • (2008) Journal of Hydrology , vol.362 , pp. 274-290
    • Norbiato, D.1    Borga, M.2    Degli Esposti, S.3    Gaume, E.4    Anquetin, S.5
  • 28
    • 84865483186 scopus 로고    scopus 로고
    • Analysis of soil moisture memory from observations in Europe
    • Orth, R., & Seneviratne, S. I. (2012). Analysis of soil moisture memory from observations in Europe. Journal of Geophysical Research, 117, D15115. https://doi.org/10.1029/2011JD017366
    • (2012) Journal of Geophysical Research , vol.117
    • Orth, R.1    Seneviratne, S.I.2
  • 33
    • 85035119425 scopus 로고    scopus 로고
    • The AI detectives
    • Voosen, P. (2017). The AI detectives. Science, 357(6346), 22–27.
    • (2017) Science , vol.357 , Issue.6346 , pp. 22-27
    • Voosen, P.1
  • 34
    • 84944123510 scopus 로고    scopus 로고
    • Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis
    • Xia, Y., Ek, M. B., Wu, Y., Ford, T., Quiring, S. M., Xia, Y.,…Quiring, S. M. (2015). Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. Journal of Hydrometeorology, 16(5), 1962–1980. https://doi.org/10.1175/JHM-D-14-0096.1
    • (2015) Journal of Hydrometeorology , vol.16 , Issue.5 , pp. 1962-1980
    • Xia, Y.1    Ek, M.B.2    Wu, Y.3    Ford, T.4    Quiring, S.M.5    Xia, Y.6    Quiring, S.M.7
  • 35
    • 85018657595 scopus 로고    scopus 로고
    • Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations
    • Yuan, S., & Quiring, S. M. (2017). Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrology and Earth System Sciences, 21(4), 2203–2218. https://doi.org/10.5194/hess-21-2203-2017
    • (2017) Hydrology and Earth System Sciences , vol.21 , Issue.4 , pp. 2203-2218
    • Yuan, S.1    Quiring, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.