메뉴 건너뛰기




Volumn 28, Issue 2, 2011, Pages 39-51

Learning low-dimensional signal models

Author keywords

Analytical models; Bayesian methods; Data models; Manifolds; Monitoring; Training data

Indexed keywords

ANALOG TO DIGITAL CONVERSION; ANALYTICAL MODELS; AUTOMOBILE ENGINE MANIFOLDS; BAYESIAN NETWORKS; DATA STRUCTURES; MEDICAL IMAGING; MONITORING;

EID: 85032751900     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2010.939733     Document Type: Article
Times cited : (23)

References (55)
  • 1
    • 33745604236 scopus 로고    scopus 로고
    • Signal recovery from incomplete and inaccurate measurements
    • E. Candè s, J. Romberg, and T. Tao, "Signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., vol. 59, pp. 1207-1223, 2005.
    • (2005) Commun. Pure Appl. Math. , vol.59 , pp. 1207-1223
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 2
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 3
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E. J. Candès and B. Recht, "Exact matrix completion via convex optimization," Found. Comput. Math., vol. 9, pp. 717-772, 2008.
    • (2008) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 5
    • 78649303140 scopus 로고    scopus 로고
    • Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds
    • M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, "Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds," IEEE Trans. Signal Processing, 2010.
    • (2010) IEEE Trans. Signal Processing
    • Chen, M.1    Silva, J.2    Paisley, J.3    Wang, C.4    Dunson, D.5    Carin, L.6
  • 7
    • 85032758169 scopus 로고    scopus 로고
    • Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective
    • to be published
    • R. Baraniuk, V. Cevher, and M. Wakin, "Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective," in Proc. IEEE, to be published.
    • Proc. IEEE
    • Baraniuk, R.1    Cevher, V.2    Wakin, M.3
  • 9
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • E. Candès and T. Tao, "Decoding by linear programming," IEEE Trans. Inform. Theory, vol. 51, pp. 4203-4215, 2005.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 4203-4215
    • Candès, E.1    Tao, T.2
  • 10
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, "A simple proof of the restricted isometry property for random matrices," Construct. Approx., vol. 28, pp. 253-263, 2008.
    • (2008) Construct. Approx. , vol.28 , pp. 253-263
    • Baraniuk, R.1    Davenport, M.2    Devore, R.3    Wakin, M.4
  • 11
    • 17444432924 scopus 로고    scopus 로고
    • Image manifolds which are isometric to Euclidean space
    • July
    • D. L. Donoho and C. Grimes, "Image manifolds which are isometric to Euclidean space," J. Math. Imag. Comput. Vision, vol. 23, no. 1, pp. 5-24, July 2005.
    • (2005) J. Math. Imag. Comput. Vision , vol.23 , Issue.1 , pp. 5-24
    • Donoho, D.L.1    Grimes, C.2
  • 12
    • 58849146227 scopus 로고    scopus 로고
    • Random projections of smooth manifolds
    • R. Baraniuk and M. Wakin, "Random projections of smooth manifolds," Foundat. Comput. Math., vol. 9, no. 1, pp. 51-77, 2009.
    • (2009) Foundat. Comput. Math. , vol.9 , Issue.1 , pp. 51-77
    • Baraniuk, R.1    Wakin, M.2
  • 15
    • 57349104469 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • to be published
    • D. Needell and J. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal., to be published.
    • Appl. Comput. Harmon. Anal.
    • Needell, D.1    Tropp, J.2
  • 16
    • 3543103176 scopus 로고    scopus 로고
    • Sparse Bayesian learning for basis selection
    • D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2153-2164, 2004.
    • (2004) IEEE Trans. Signal Processing , vol.52 , Issue.8 , pp. 2153-2164
    • Wipf, D.P.1    Rao, B.D.2
  • 17
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2346-2356, 2008.
    • (2008) IEEE Trans. Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 23
    • 0037336255 scopus 로고    scopus 로고
    • Approximation and consistency of Bayes factors as model dimension grows
    • J. Berger, J. Ghosh, and N. Mukhopadhyay, "Approximation and consistency of Bayes factors as model dimension grows," J. Statist. Plan. Infer., vol. 112, pp. 241-258, 2003.
    • (2003) J. Statist. Plan. Infer. , vol.112 , pp. 241-258
    • Berger, J.1    Ghosh, J.2    Mukhopadhyay, N.3
  • 24
    • 28244438066 scopus 로고    scopus 로고
    • A note on choosing the number of factors
    • S. Press and K. Shigemasu, "A note on choosing the number of factors," Commun. Statist. Theory Methods, vol. 28, pp. 1653-1670, 1999.
    • (1999) Commun. Statist. Theory Methods , vol.28 , pp. 1653-1670
    • Press, S.1    Shigemasu, K.2
  • 25
    • 2242448298 scopus 로고    scopus 로고
    • Bayesian selection on the number of factors in a factor analysis model
    • S. Lee and X. Song, "Bayesian selection on the number of factors in a factor analysis model," Behaviormetrika, vol. 29, pp. 23-39, 2002.
    • (2002) Behaviormetrika , vol.29 , pp. 23-39
    • Lee, S.1    Song, X.2
  • 26
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. Ferguson, "A Bayesian analysis of some nonparametric problems," Ann. Statistics, vol. 1, pp. 209-230, 1973.
    • (1973) Ann. Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 27
    • 0033556788 scopus 로고    scopus 로고
    • Mixture of principal component analyzers
    • M. Tipping and C. Bishop, "Mixture of principal component analyzers," Neural Comput., vol. 11, pp. 443-482, 1999.
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 28
    • 85032772859 scopus 로고    scopus 로고
    • Performance bounds for compressive sensing with a mixture of factor analyzers
    • A. Eftekhari and M. B. Wakin, "Performance bounds for compressive sensing with a mixture of factor analyzers," School of Mines, Tech. Rep. 2010.
    • School of Mines, Tech. Rep. , vol.2010
    • Eftekhari, A.1    Wakin, M.B.2
  • 29
    • 69349089478 scopus 로고    scopus 로고
    • Exploiting structure in wavelet-based Bayesian compressive sensing
    • L. He and L. Carin, "Exploiting structure in wavelet-based Bayesian compressive sensing," IEEE Trans. Signal Processing, vol. 57, pp. 3488-3497, 2009.
    • (2009) IEEE Trans. Signal Processing , vol.57 , pp. 3488-3497
    • He, L.1    Carin, L.2
  • 32
    • 61549136231 scopus 로고    scopus 로고
    • Robust recovery of signals from a union of subspaces
    • Y. C. Eldar and M. Mishali, "Robust recovery of signals from a union of subspaces," IEEE Trans. Inform. Theory, vol. 12, pp. 1338-1351, 2008.
    • (2008) IEEE Trans. Inform. Theory , vol.12 , pp. 1338-1351
    • Eldar, Y.C.1    Mishali, M.2
  • 34
    • 84969653882 scopus 로고
    • Completely random measures
    • J. F. C. Kingman, "Completely random measures," Pacific J. Math., vol. 21, no. 1, pp. 59-78, 1967.
    • (1967) Pacific J. Math. , vol.21 , Issue.1 , pp. 59-78
    • Kingman, J.F.C.1
  • 36
    • 0001241617 scopus 로고
    • Nonparametric Bayes estimators based on beta processes in models for life history data
    • N. L. Hjort, "Nonparametric Bayes estimators based on beta processes in models for life history data," Ann. Stat., vol. 18, no. 3, pp. 1259-1294, 1990.
    • (1990) Ann. Stat. , vol.18 , Issue.3 , pp. 1259-1294
    • Hjort, N.L.1
  • 40
    • 21344479762 scopus 로고
    • Estimating normal means with a Dirichlet process prior
    • M. D. Escobar, "Estimating normal means with a Dirichlet process prior," J. Amer. Stat. Assoc., vol. 89, pp. 268-277, 1994.
    • (1994) J. Amer. Stat. Assoc. , vol.89 , pp. 268-277
    • Escobar, M.D.1
  • 41
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • R. M. Neal, "Markov chain sampling methods for Dirichlet process mixture models," J. Comput. Graph. Stat., vol. 9, pp. 249-265, 2000.
    • (2000) J. Comput. Graph. Stat. , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 42
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priros
    • H. Ishwaran and L. F. James, "Gibbs sampling methods for stick-breaking priros," J. Amer. Stat. Assoc. Theory Methods, vol. 96, no. 453, pp. 161-173, 2001.
    • (2001) J. Amer. Stat. Assoc. Theory Methods , vol.96 , Issue.453 , pp. 161-173
    • Ishwaran, H.1    James, L.F.2
  • 43
    • 33847707418 scopus 로고    scopus 로고
    • Sampling the Dirichlet mixture model with slices
    • S. G. Walker, "Sampling the Dirichlet mixture model with slices," Commun. Stat. Simulat. Comput., vol. 36, p. 45, 2007.
    • (2007) Commun. Stat. Simulat. Comput. , vol.36 , pp. 45
    • Walker, S.G.1
  • 44
    • 77954201482 scopus 로고    scopus 로고
    • Hierarchical Bayesian nonparametric models with applications
    • Cambridge: U.K.: Cambridge Univ. Press
    • Y. W. Teh and M. I. Jordan, "Hierarchical Bayesian nonparametric models with applications," Bayesian Nonparametrics: Principles and Practice. Cambridge: U.K.: Cambridge Univ. Press, 2010.
    • (2010) Bayesian Nonparametrics: Principles and Practice
    • Teh, Y.W.1    Jordan, M.I.2
  • 47
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol. 52, pp. 489-509, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 48
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Mag., vol. 25, pp. 21-30, 2008.
    • (2008) IEEE Signal Processing Mag. , vol.25 , pp. 21-30
    • Candès, E.J.1    Wakin, M.B.2
  • 49
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • E. J. Candès, "The restricted isometry property and its implications for compressed sensing," Compte Rendus de l'Academie des Sciences, Paris, Serie I, vol. 346, pp. 589-592, 2008.
    • (2008) Compte Rendus de l'Academie des Sciences, Paris, Serie i , vol.346 , pp. 589-592
    • Candès, E.J.1
  • 52
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. J. Candè s and T. Tao, "The power of convex relaxation: Near-optimal matrix completion," IEEE Trans. Inform. Theory, vol. 56, pp. 2053-2080, 2009.
    • (2009) IEEE Trans. Inform. Theory , vol.56 , pp. 2053-2080
    • Candès, E.J.1    Tao, T.2
  • 53
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • E. J. Candè s and Y. Plan, "Matrix completion with noise," in Proc. IEEE, 2010.
    • (2010) Proc. IEEE
    • Candès, E.J.1    Plan, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.