메뉴 건너뛰기




Volumn 31, Issue 3, 2014, Pages 76-86

Putting nonnegative matrix factorization to the test: A tutorial derivation of pertinent Cramer? Rao bounds and performance benchmarking

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; FACTORIZATION; FISHER INFORMATION MATRIX; LEARNING SYSTEMS;

EID: 85032751413     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2013.2296172     Document Type: Article
Times cited : (24)

References (41)
  • 1
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 2
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 4
    • 0025517126 scopus 로고
    • Lower bounds for parametric estimation with constraints
    • J. D. Gorman and A. O. Hero, "Lower bounds for parametric estimation with constraints," IEEE Trans. Inform. Theory, vol. 36, no. 6, pp. 1285-1301, 1990.
    • (1990) IEEE Trans. Inform. Theory , vol.36 , Issue.6 , pp. 1285-1301
    • Gorman, J.D.1    Hero, A.O.2
  • 5
    • 0032123107 scopus 로고    scopus 로고
    • On the Cramér-Rao bound under parametric constraints
    • P. Stoica and B. C. Ng, "On the Cramér-Rao bound under parametric constraints," IEEE Signal Processing Lett., vol. 5, no. 7, pp. 177-179, 1998.
    • (1998) IEEE Signal Processing Lett. , vol.5 , Issue.7 , pp. 177-179
    • Stoica, P.1    Ng, B.C.2
  • 6
    • 0035120825 scopus 로고    scopus 로고
    • Parameter estimation problems with singular information matrices
    • DOI 10.1109/78.890346
    • P. Stoica and T. L. Marzetta, "Parameter estimation problems with singular information matrices," IEEE Trans. Signal Processing, vol. 49, no. 1, pp. 87-90, 2001. (Pubitemid 32137126)
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.1 , pp. 87-90
    • Stoica, P.1
  • 7
    • 65649106479 scopus 로고    scopus 로고
    • On the constrained Cramér-Rao bound with a singular Fisher information matrix
    • Z. Ben-Haim and Y. C. Eldar, "On the constrained Cramér-Rao bound with a singular Fisher information matrix," IEEE Signal Processing Lett., vol. 16, no. 6, pp. 453-456, 2009.
    • (2009) IEEE Signal Processing Lett. , vol.16 , Issue.6 , pp. 453-456
    • Ben-Haim, Z.1    Eldar, Y.C.2
  • 8
    • 0442311210 scopus 로고    scopus 로고
    • Optimal pairing of signal components separated by blind techniques
    • P. Tichavský and Z. Koldovský, "Optimal pairing of signal components separated by blind techniques," IEEE Signal Processing Lett., vol. 11, no. 2, pp. 119-122, 2004.
    • (2004) IEEE Signal Processing Lett. , vol.11 , Issue.2 , pp. 119-122
    • Tichavský, P.1    Koldovský, Z.2
  • 9
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. W. Kuhn, "The Hungarian method for the assignment problem," Naval Res. Logist. Quart., vol. 2, no. 1-2, pp. 83-97, 1955.
    • (1955) Naval Res. Logist. Quart. , vol.2 , Issue.1-2 , pp. 83-97
    • Kuhn, H.W.1
  • 11
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • Cambridge, MA: MIT Press
    • D. L. Donoho and V. C. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?," in Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2003, vol. 16, pp. 1141-1148.
    • (2003) Advances in Neural Information Processing Systems (NIPS). , vol.16 , pp. 1141-1148
    • Donoho, D.L.1    Stodden, V.C.2
  • 13
    • 84870868704 scopus 로고    scopus 로고
    • Sparse and unique nonnegative matrix factorization through data preprocessing
    • Nov.
    • N. Gillis, "Sparse and unique nonnegative matrix factorization through data preprocessing," J. Mach. Learn. Res., vol. 13, pp. 3349-3386, Nov. 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 3349-3386
    • Gillis, N.1
  • 14
    • 84890916116 scopus 로고    scopus 로고
    • Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition
    • Jan.
    • K. Huang, N. D. Sidiropoulos, and A. Swami, "Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition," IEEE Trans. Signal Processing, vol. 62, no. 1, pp. 211-224, Jan. 2014.
    • (2014) IEEE Trans. Signal Processing , vol.62 , Issue.1 , pp. 211-224
    • Huang, K.1    Sidiropoulos, N.D.2    Swami, A.3
  • 15
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S. A. Vavasis, "On the complexity of nonnegative matrix factorization," SIAM J. Optim., vol. 20, no. 3, pp. 1364-1377, 2009.
    • (2009) SIAM J. Optim. , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.A.1
  • 17
    • 83855161608 scopus 로고    scopus 로고
    • Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering
    • Z. He, S. Xie, R. Zdunek, G. Zhou, and A. Cichocki, "Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering," IEEE Trans. Neural Networks, vol. 22, no. 12, pp. 2117-2131, 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.12 , pp. 2117-2131
    • He, Z.1    Xie, S.2    Zdunek, R.3    Zhou, G.4    Cichocki, A.5
  • 19
    • 84894450105 scopus 로고    scopus 로고
    • On the computational complexity of membership problems for the completely positive cone and its dual
    • submitted for publication. DOI: 10.1007/s10589-013-9594-z
    • P. J. C. Dickinson and L. Gijben, "On the computational complexity of membership problems for the completely positive cone and its dual," Computat. Optim. Applicat., submitted for publication. DOI: 10.1007/s10589-013- 9594-z
    • Computat. Optim. Applicat.
    • Dickinson, P.J.C.1    Gijben, L.2
  • 20
    • 83655184772 scopus 로고    scopus 로고
    • Quadratic nonnegative matrix factorization
    • Z. Yang and E. Oja, "Quadratic nonnegative matrix factorization," Pattern Recognit., vol. 45, no. 4, pp. 1500-1510, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.4 , pp. 1500-1510
    • Yang, Z.1    Oja, E.2
  • 21
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. Ding, X. He, and H. D. Simon, "On the equivalence of nonnegative matrix factorization and spectral clustering," in Proc. SIAM Int. Conf. Data Mining (SDM'05), 2005, vol. 5, pp. 606-610.
    • (2005) Proc. SIAM Int. Conf. Data Mining (SDM'05) , vol.5 , pp. 606-610
    • Ding, C.1    He, X.2    Simon, H.D.3
  • 24
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization," Neural Computat., vol. 19, no. 10, pp. 2756-2779, 2007.
    • (2007) Neural Computat. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 25
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • DOI 10.1016/j.sigpro.2007.01.024, PII S0165168407000527
    • R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization," Signal Process., vol. 87, no. 8, pp. 1904-1916, 2007. (Pubitemid 46590394)
    • (2007) Signal Processing , vol.87 , Issue.8 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 26
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • DOI 10.1016/j.csda.2006.11.006, PII S0167947306004191
    • M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization," Computat. Stat. Data Anal., vol. 52, no. 1, pp. 155-173, 2007. (Pubitemid 47331703)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.W.1    Browne, M.2    Langville, A.N.3    Pauca, V.P.4    Plemmons, R.J.5
  • 27
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler and C. Schnörr, "Learning sparse representations by non-negative matrix factorization and sequential cone programming," J. Mach. Learn. Res., vol. 7, pp. 1385-1407, July 2006. (Pubitemid 44024595)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1385-1407
    • Heiler, M.1    Schnorr, C.2
  • 28
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim and H. Park, "Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method," SIAM J. Matrix Anal. Applicat., vol. 30, no. 2, pp. 713-730, 2008.
    • (2008) SIAM J. Matrix Anal. Applicat. , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 29
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization: An active-set-like method and comparisons
    • J. Kim and H. Park, "Fast nonnegative matrix factorization: An active-set-like method and comparisons," SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261-3281, 2011.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.6 , pp. 3261-3281
    • Kim, J.1    Park, H.2
  • 30
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki and A.-H. Phan, "Fast local algorithms for large scale nonnegative matrix and tensor factorizations," IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. 92, no. 3, pp. 708-721, 2009.
    • (2009) IEICE Trans. Fundam. Electron., Commun. Comput. Sci. , vol.92 , Issue.3 , pp. 708-721
    • Cichocki, A.1    Phan, A.-H.2
  • 31
    • 58249092020 scopus 로고    scopus 로고
    • Non-negative matrix factorization: Ill-posedness and a geometric algorithm
    • B. Klingenberg, J. Curry, and A. Dougherty, "Non-negative matrix factorization: Ill-posedness and a geometric algorithm," Pattern Recognit., vol. 42, no. 5, pp. 918-928, 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.5 , pp. 918-928
    • Klingenberg, B.1    Curry, J.2    Dougherty, A.3
  • 32
    • 84861020744 scopus 로고    scopus 로고
    • Initialization of nonnegative matrix factorization with vertices of convex polytope
    • New York: Springer
    • R. Zdunek, "Initialization of nonnegative matrix factorization with vertices of convex polytope," in Artificial Intelligence and Soft Computing. New York: Springer, 2012, pp. 448-455.
    • (2012) Artificial Intelligence and Soft Computing. , pp. 448-455
    • Zdunek, R.1
  • 35
    • 55549091744 scopus 로고    scopus 로고
    • Low-dimensional polytope approximation and its applications to nonnegative matrix factorization
    • M. T. Chu and M. M. Lin, "Low-dimensional polytope approximation and its applications to nonnegative matrix factorization," SIAM J. Sci. Comput., vol. 30, no. 3, pp. 1131-1155, 2008.
    • (2008) SIAM J. Sci. Comput. , vol.30 , Issue.3 , pp. 1131-1155
    • Chu, M.T.1    Lin, M.M.2
  • 37
    • 0030231371 scopus 로고    scopus 로고
    • Cramer-Rao bounds for deterministic signals in additive and multiplicative noise
    • PII S0165168496000886
    • A. Swami, "Cramér-Rao bounds for deterministic signals in additive and multiplicative noise," Signal Process., vol. 53, no. 2, pp. 231-244, 1996. (Pubitemid 126370908)
    • (1996) Signal Processing , vol.53 , Issue.2-3 , pp. 231-244
    • Swami, A.1
  • 40
    • 0016451396 scopus 로고
    • The Moore-Penrose inverse of a partitioned matrix M = BA DC j
    • C. Hung and T. L. Markham, "The Moore-Penrose inverse of a partitioned matrix M = BA DC j, " Linear Algebra Applica., vol. 11, no. 1, pp. 73-86, 1975.
    • (1975) Linear Algebra Applica. , vol.11 , Issue.1 , pp. 73-86
    • Hung, C.1    Markham, T.L.2
  • 41
    • 84974232361 scopus 로고
    • The Moore-Penrose inverse of a sum of matrices
    • C. Hung and T. L. Markham, "The Moore-Penrose inverse of a sum of matrices," J. Aust. Math. Soc., Ser. A, vol. 24, no. 4, pp. 385-392, 1977.
    • (1977) J. Aust. Math. Soc., Ser. A , vol.24 , Issue.4 , pp. 385-392
    • Hung, C.1    Markham, T.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.