-
1
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
2
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
4
-
-
0025517126
-
Lower bounds for parametric estimation with constraints
-
J. D. Gorman and A. O. Hero, "Lower bounds for parametric estimation with constraints," IEEE Trans. Inform. Theory, vol. 36, no. 6, pp. 1285-1301, 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, Issue.6
, pp. 1285-1301
-
-
Gorman, J.D.1
Hero, A.O.2
-
5
-
-
0032123107
-
On the Cramér-Rao bound under parametric constraints
-
P. Stoica and B. C. Ng, "On the Cramér-Rao bound under parametric constraints," IEEE Signal Processing Lett., vol. 5, no. 7, pp. 177-179, 1998.
-
(1998)
IEEE Signal Processing Lett.
, vol.5
, Issue.7
, pp. 177-179
-
-
Stoica, P.1
Ng, B.C.2
-
6
-
-
0035120825
-
Parameter estimation problems with singular information matrices
-
DOI 10.1109/78.890346
-
P. Stoica and T. L. Marzetta, "Parameter estimation problems with singular information matrices," IEEE Trans. Signal Processing, vol. 49, no. 1, pp. 87-90, 2001. (Pubitemid 32137126)
-
(2001)
IEEE Transactions on Signal Processing
, vol.49
, Issue.1
, pp. 87-90
-
-
Stoica, P.1
-
7
-
-
65649106479
-
On the constrained Cramér-Rao bound with a singular Fisher information matrix
-
Z. Ben-Haim and Y. C. Eldar, "On the constrained Cramér-Rao bound with a singular Fisher information matrix," IEEE Signal Processing Lett., vol. 16, no. 6, pp. 453-456, 2009.
-
(2009)
IEEE Signal Processing Lett.
, vol.16
, Issue.6
, pp. 453-456
-
-
Ben-Haim, Z.1
Eldar, Y.C.2
-
8
-
-
0442311210
-
Optimal pairing of signal components separated by blind techniques
-
P. Tichavský and Z. Koldovský, "Optimal pairing of signal components separated by blind techniques," IEEE Signal Processing Lett., vol. 11, no. 2, pp. 119-122, 2004.
-
(2004)
IEEE Signal Processing Lett.
, vol.11
, Issue.2
, pp. 119-122
-
-
Tichavský, P.1
Koldovský, Z.2
-
9
-
-
0002719797
-
The Hungarian method for the assignment problem
-
H. W. Kuhn, "The Hungarian method for the assignment problem," Naval Res. Logist. Quart., vol. 2, no. 1-2, pp. 83-97, 1955.
-
(1955)
Naval Res. Logist. Quart.
, vol.2
, Issue.1-2
, pp. 83-97
-
-
Kuhn, H.W.1
-
11
-
-
23744456750
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
Cambridge, MA: MIT Press
-
D. L. Donoho and V. C. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?," in Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2003, vol. 16, pp. 1141-1148.
-
(2003)
Advances in Neural Information Processing Systems (NIPS).
, vol.16
, pp. 1141-1148
-
-
Donoho, D.L.1
Stodden, V.C.2
-
12
-
-
47649123078
-
Theorems on positive data: On the uniqueness of NMF
-
Article ID 764206, DOI: 10.1155/2008/764206
-
H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H. Jensen, "Theorems on positive data: On the uniqueness of NMF," Computat. Intell. Neurosci., vol. 2008, Article ID 764206, 9 pages, DOI: 10.1155/2008/764206.
-
Computat. Intell. Neurosci.
, vol.2008
, pp. 9
-
-
Laurberg, H.1
Christensen, M.G.2
Plumbley, M.D.3
Hansen, L.K.4
Jensen, S.H.5
-
13
-
-
84870868704
-
Sparse and unique nonnegative matrix factorization through data preprocessing
-
Nov.
-
N. Gillis, "Sparse and unique nonnegative matrix factorization through data preprocessing," J. Mach. Learn. Res., vol. 13, pp. 3349-3386, Nov. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 3349-3386
-
-
Gillis, N.1
-
14
-
-
84890916116
-
Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition
-
Jan.
-
K. Huang, N. D. Sidiropoulos, and A. Swami, "Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition," IEEE Trans. Signal Processing, vol. 62, no. 1, pp. 211-224, Jan. 2014.
-
(2014)
IEEE Trans. Signal Processing
, vol.62
, Issue.1
, pp. 211-224
-
-
Huang, K.1
Sidiropoulos, N.D.2
Swami, A.3
-
15
-
-
73249153369
-
On the complexity of nonnegative matrix factorization
-
S. A. Vavasis, "On the complexity of nonnegative matrix factorization," SIAM J. Optim., vol. 20, no. 3, pp. 1364-1377, 2009.
-
(2009)
SIAM J. Optim.
, vol.20
, Issue.3
, pp. 1364-1377
-
-
Vavasis, S.A.1
-
16
-
-
84891283756
-
-
Hoboken, NJ: Wiley
-
A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Hoboken, NJ: Wiley, 2009.
-
(2009)
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation.
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.H.3
Amari, S.4
-
17
-
-
83855161608
-
Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering
-
Z. He, S. Xie, R. Zdunek, G. Zhou, and A. Cichocki, "Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering," IEEE Trans. Neural Networks, vol. 22, no. 12, pp. 2117-2131, 2011.
-
(2011)
IEEE Trans. Neural Networks
, vol.22
, Issue.12
, pp. 2117-2131
-
-
He, Z.1
Xie, S.2
Zdunek, R.3
Zhou, G.4
Cichocki, A.5
-
19
-
-
84894450105
-
On the computational complexity of membership problems for the completely positive cone and its dual
-
submitted for publication. DOI: 10.1007/s10589-013-9594-z
-
P. J. C. Dickinson and L. Gijben, "On the computational complexity of membership problems for the completely positive cone and its dual," Computat. Optim. Applicat., submitted for publication. DOI: 10.1007/s10589-013- 9594-z
-
Computat. Optim. Applicat.
-
-
Dickinson, P.J.C.1
Gijben, L.2
-
20
-
-
83655184772
-
Quadratic nonnegative matrix factorization
-
Z. Yang and E. Oja, "Quadratic nonnegative matrix factorization," Pattern Recognit., vol. 45, no. 4, pp. 1500-1510, 2012.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.4
, pp. 1500-1510
-
-
Yang, Z.1
Oja, E.2
-
21
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, and H. D. Simon, "On the equivalence of nonnegative matrix factorization and spectral clustering," in Proc. SIAM Int. Conf. Data Mining (SDM'05), 2005, vol. 5, pp. 606-610.
-
(2005)
Proc. SIAM Int. Conf. Data Mining (SDM'05)
, vol.5
, pp. 606-610
-
-
Ding, C.1
He, X.2
Simon, H.D.3
-
23
-
-
33746239350
-
Extended SMART algorithms for non-negative matrix factorization invited paper
-
DOI 10.1007/11785231-58, Artificial Intelligence and Soft Computing - ICAISC 2006 - 8th International Conference, Proceedings
-
A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He, "Extended SMART algorithms for non-negative matrix factorization," in Artificial Intelligence and Soft Computing (ICAISC). New York: Springer, 2006, pp. 548-562. (Pubitemid 44089843)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4029
, pp. 548-562
-
-
Cichocki, A.1
Amari, S.-I.2
Zdunek, R.3
Kompass, R.4
Hori, G.5
He, Z.6
-
24
-
-
35548969471
-
Projected gradient methods for nonnegative matrix factorization
-
C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization," Neural Computat., vol. 19, no. 10, pp. 2756-2779, 2007.
-
(2007)
Neural Computat.
, vol.19
, Issue.10
, pp. 2756-2779
-
-
Lin, C.-J.1
-
25
-
-
34247173538
-
Nonnegative matrix factorization with constrained second-order optimization
-
DOI 10.1016/j.sigpro.2007.01.024, PII S0165168407000527
-
R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization," Signal Process., vol. 87, no. 8, pp. 1904-1916, 2007. (Pubitemid 46590394)
-
(2007)
Signal Processing
, vol.87
, Issue.8
, pp. 1904-1916
-
-
Zdunek, R.1
Cichocki, A.2
-
26
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
DOI 10.1016/j.csda.2006.11.006, PII S0167947306004191
-
M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization," Computat. Stat. Data Anal., vol. 52, no. 1, pp. 155-173, 2007. (Pubitemid 47331703)
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, Issue.1
, pp. 155-173
-
-
Berry, M.W.1
Browne, M.2
Langville, A.N.3
Pauca, V.P.4
Plemmons, R.J.5
-
27
-
-
33745765253
-
Learning sparse representations by non-negative matrix factorization and sequential cone programming
-
M. Heiler and C. Schnörr, "Learning sparse representations by non-negative matrix factorization and sequential cone programming," J. Mach. Learn. Res., vol. 7, pp. 1385-1407, July 2006. (Pubitemid 44024595)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1385-1407
-
-
Heiler, M.1
Schnorr, C.2
-
28
-
-
67349093319
-
Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
-
H. Kim and H. Park, "Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method," SIAM J. Matrix Anal. Applicat., vol. 30, no. 2, pp. 713-730, 2008.
-
(2008)
SIAM J. Matrix Anal. Applicat.
, vol.30
, Issue.2
, pp. 713-730
-
-
Kim, H.1
Park, H.2
-
29
-
-
84863012243
-
Fast nonnegative matrix factorization: An active-set-like method and comparisons
-
J. Kim and H. Park, "Fast nonnegative matrix factorization: An active-set-like method and comparisons," SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261-3281, 2011.
-
(2011)
SIAM J. Sci. Comput.
, vol.33
, Issue.6
, pp. 3261-3281
-
-
Kim, J.1
Park, H.2
-
30
-
-
74449093261
-
Fast local algorithms for large scale nonnegative matrix and tensor factorizations
-
A. Cichocki and A.-H. Phan, "Fast local algorithms for large scale nonnegative matrix and tensor factorizations," IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. 92, no. 3, pp. 708-721, 2009.
-
(2009)
IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
, vol.92
, Issue.3
, pp. 708-721
-
-
Cichocki, A.1
Phan, A.-H.2
-
31
-
-
58249092020
-
Non-negative matrix factorization: Ill-posedness and a geometric algorithm
-
B. Klingenberg, J. Curry, and A. Dougherty, "Non-negative matrix factorization: Ill-posedness and a geometric algorithm," Pattern Recognit., vol. 42, no. 5, pp. 918-928, 2009.
-
(2009)
Pattern Recognit.
, vol.42
, Issue.5
, pp. 918-928
-
-
Klingenberg, B.1
Curry, J.2
Dougherty, A.3
-
32
-
-
84861020744
-
Initialization of nonnegative matrix factorization with vertices of convex polytope
-
New York: Springer
-
R. Zdunek, "Initialization of nonnegative matrix factorization with vertices of convex polytope," in Artificial Intelligence and Soft Computing. New York: Springer, 2012, pp. 448-455.
-
(2012)
Artificial Intelligence and Soft Computing.
, pp. 448-455
-
-
Zdunek, R.1
-
34
-
-
84867592112
-
Simplicial cone shrinking algorithm for unmixing nonnegative sources
-
W. S. B. Ouedraogo, A. Souloumiac, M. Jaidane, and C. Jutten, "Simplicial cone shrinking algorithm for unmixing nonnegative sources," in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 2012, pp. 2405-2408.
-
(2012)
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP)
, pp. 2405-2408
-
-
Ouedraogo, W.S.B.1
Souloumiac, A.2
Jaidane, M.3
Jutten, C.4
-
35
-
-
55549091744
-
Low-dimensional polytope approximation and its applications to nonnegative matrix factorization
-
M. T. Chu and M. M. Lin, "Low-dimensional polytope approximation and its applications to nonnegative matrix factorization," SIAM J. Sci. Comput., vol. 30, no. 3, pp. 1131-1155, 2008.
-
(2008)
SIAM J. Sci. Comput.
, vol.30
, Issue.3
, pp. 1131-1155
-
-
Chu, M.T.1
Lin, M.M.2
-
37
-
-
0030231371
-
Cramer-Rao bounds for deterministic signals in additive and multiplicative noise
-
PII S0165168496000886
-
A. Swami, "Cramér-Rao bounds for deterministic signals in additive and multiplicative noise," Signal Process., vol. 53, no. 2, pp. 231-244, 1996. (Pubitemid 126370908)
-
(1996)
Signal Processing
, vol.53
, Issue.2-3
, pp. 231-244
-
-
Swami, A.1
-
39
-
-
33847718849
-
-
[Online]
-
M. Chu, F. Diele, R. Plemmons, and S. Ragni. (2004). Optimality, computation, and interpretation of nonnegative matrix factorizations. [Online]. Available: http://www4.ncsu.edu/~mtchu/Research/Papers/nnmf.pdf.
-
(2004)
Optimality, Computation, and Interpretation of Nonnegative Matrix Factorizations
-
-
Chu, M.1
Diele, F.2
Plemmons, R.3
Ragni, S.4
-
40
-
-
0016451396
-
The Moore-Penrose inverse of a partitioned matrix M = BA DC j
-
C. Hung and T. L. Markham, "The Moore-Penrose inverse of a partitioned matrix M = BA DC j, " Linear Algebra Applica., vol. 11, no. 1, pp. 73-86, 1975.
-
(1975)
Linear Algebra Applica.
, vol.11
, Issue.1
, pp. 73-86
-
-
Hung, C.1
Markham, T.L.2
-
41
-
-
84974232361
-
The Moore-Penrose inverse of a sum of matrices
-
C. Hung and T. L. Markham, "The Moore-Penrose inverse of a sum of matrices," J. Aust. Math. Soc., Ser. A, vol. 24, no. 4, pp. 385-392, 1977.
-
(1977)
J. Aust. Math. Soc., Ser. A
, vol.24
, Issue.4
, pp. 385-392
-
-
Hung, C.1
Markham, T.L.2
|