메뉴 건너뛰기




Volumn 13, Issue 10, 2017, Pages

A deep convolutional neural network for classification of red blood cells in sickle cell anemia

Author keywords

[No Author keywords available]

Indexed keywords

BLOOD; CELLS; CONVOLUTION; CYTOLOGY; DEEP NEURAL NETWORKS; DIAGNOSIS; FACTOR ANALYSIS; IMAGE ENHANCEMENT;

EID: 85032445528     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1005746     Document Type: Article
Times cited : (194)

References (32)
  • 2
    • 84923769800 scopus 로고    scopus 로고
    • Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease
    • 2525667
    • Fasano RM, Booth GS, Miles M, Du L, Koyama T, Meier ER, et al. Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease. British journal of haematology. 2015;168(2):291–300. doi: 10.1111/bjh.13123 25256676
    • (2015) British journal of haematology , vol.168 , Issue.2 , pp. 291-300
    • Fasano, R.M.1    Booth, G.S.2    Miles, M.3    Du, L.4    Koyama, T.5    Meier, E.R.6
  • 3
    • 84920703518 scopus 로고    scopus 로고
    • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
    • Abubakar I, Tillmann T, Banerjee A, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171. doi: 10.1016/S0140-6736(14)61682-2
    • (2015) Lancet , vol.385 , Issue.9963 , pp. 117-171
    • Abubakar, I.1    Tillmann, T.2    Banerjee, A.3
  • 5
    • 84988425865 scopus 로고    scopus 로고
    • Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography
    • 2750589
    • Darrow MC, Zhang Y, Cinquin BP, Smith EA, Boudreau R, Rochat RH, et al. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J Cell Sci. 2016;129(18):3511–3517. doi: 10.1242/jcs.189225 27505892
    • (2016) J Cell Sci , vol.129 , Issue.18 , pp. 3511-3517
    • Darrow, M.C.1    Zhang, Y.2    Cinquin, B.P.3    Smith, E.A.4    Boudreau, R.5    Rochat, R.H.6
  • 6
    • 84900864121 scopus 로고    scopus 로고
    • Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease
    • 2458563
    • van Beers EJ, Samsel L, Mendelsohn L, Saiyed R, Fertrin KY, Brantner CA, et al. Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease. American journal of hematology. 2014;89(6):598–603. doi: 10.1002/ajh.23699 24585634
    • (2014) American journal of hematology , vol.89 , Issue.6 , pp. 598-603
    • van Beers, E.J.1    Samsel, L.2    Mendelsohn, L.3    Saiyed, R.4    Fertrin, K.Y.5    Brantner, C.A.6
  • 7
    • 84937047444 scopus 로고    scopus 로고
    • iCut: an integrative cut algorithm enables accurate segmentation of touching cells
    • He Y, Gong H, Xiong B, Xu X, Li A, Jiang T, et al. iCut: an integrative cut algorithm enables accurate segmentation of touching cells. Scientific reports. 2015;5.
    • (2015) Scientific reports , vol.5
    • He, Y.1    Gong, H.2    Xiong, B.3    Xu, X.4    Li, A.5    Jiang, T.6
  • 8
    • 84941243510 scopus 로고    scopus 로고
    • Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering
    • 2637099
    • Liu Z, Liu J, Xiao X, Yuan H, Li X, Chang J, et al. Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering. sensors. 2015;15(9):22561–22586. doi: 10.3390/s150922561 26370995
    • (2015) sensors , vol.15 , Issue.9 , pp. 22561-22586
    • Liu, Z.1    Liu, J.2    Xiao, X.3    Yuan, H.4    Li, X.5    Chang, J.6
  • 9
    • 84948090245 scopus 로고    scopus 로고
    • Detecting overlapping instances in microscopy images using extremal region trees
    • 2598067
    • Arteta C, Lempitsky V, Noble JA, Zisserman A, Detecting overlapping instances in microscopy images using extremal region trees. Medical image analysis. 2016;27:3–16. doi: 10.1016/j.media.2015.03.002 25980675
    • (2016) Medical image analysis , vol.27 , pp. 3-16
    • Arteta, C.1    Lempitsky, V.2    Noble, J.A.3    Zisserman, A.4
  • 11
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    • 1707689
    • Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome biology. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100 17076895
    • (2006) Genome biology , vol.7 , Issue.10 , pp. R100
    • Carpenter, A.E.1    Jones, T.R.2    Lamprecht, M.R.3    Clarke, C.4    Kang, I.H.5    Friman, O.6
  • 12
    • 47049102271 scopus 로고    scopus 로고
    • CellTrack: an open-source software for cell tracking and motility analysis
    • 1851146
    • Sacan A, Ferhatosmanoglu H, Coskun H, CellTrack: an open-source software for cell tracking and motility analysis. Bioinformatics. 2008;24(14):1647–1649. doi: 10.1093/bioinformatics/btn247 18511469
    • (2008) Bioinformatics , vol.24 , Issue.14 , pp. 1647-1649
    • Sacan, A.1    Ferhatosmanoglu, H.2    Coskun, H.3
  • 15
    • 84891956083 scopus 로고    scopus 로고
    • Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
    • Shekhar K, Brodin P, Davis MM, Chakraborty AK, Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proceedings of the National Academy of Sciences. 2014;111(1):202–207. doi: 10.1073/pnas.1321405111
    • (2014) Proceedings of the National Academy of Sciences , vol.111 , Issue.1 , pp. 202-207
    • Shekhar, K.1    Brodin, P.2    Davis, M.M.3    Chakraborty, A.K.4
  • 16
    • 84897107533 scopus 로고    scopus 로고
    • HEp-2 cell image classification with multiple linear descriptors
    • Liu L, Wang L, HEp-2 cell image classification with multiple linear descriptors. Pattern Recognition. 2014;47(7):2400–2408. doi: 10.1016/j.patcog.2013.09.022
    • (2014) Pattern Recognition , vol.47 , Issue.7 , pp. 2400-2408
    • Liu, L.1    Wang, L.2
  • 17
    • 84891139303 scopus 로고    scopus 로고
    • Sparse coding induced transfer learning for hep-2 cell classification
    • 2421190
    • Liu A, Gao Z, Tong H, Su Y, Yang Z, Sparse coding induced transfer learning for hep-2 cell classification. Bio-medical materials and engineering. 2014;24(1):237–243. 24211903
    • (2014) Bio-medical materials and engineering , vol.24 , Issue.1 , pp. 237-243
    • Liu, A.1    Gao, Z.2    Tong, H.3    Su, Y.4    Yang, Z.5
  • 18
    • 84924509229 scopus 로고    scopus 로고
    • Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on
    • Donato C, Vincenzo T, Marco C, Francesco F, Maria VS, Giuseppe R. HEp-2 cell classification with heterogeneous classes-processes based on k-nearest neighbours. In: Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on. IEEE; 2014. p. 10–15.
    • IEEE , vol.2014 , pp. 10-15
    • Donato, C.1    Vincenzo, T.2    Marco, C.3    Francesco, F.4    Maria, V.S.5    Giuseppe, R.6
  • 19
    • 84919414531 scopus 로고    scopus 로고
    • Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on
    • Gao Z, Zhang J, Zhou L, Wang L. Hep-2 cell image classification with convolutional neural networks. In: Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on. IEEE; 2014. p. 24–28.
    • IEEE , vol.2014 , pp. 24-28
    • Gao, Z.1    Zhang, J.2    Zhou, L.3    Wang, L.4
  • 20
    • 85032716055 scopus 로고    scopus 로고
    • Li H, Zhang J, Zheng WS. Deep CNNs for HEp-2 Cells Classification: A Cross-specimen Analysis. arXiv preprint arXiv:160405816. 201
    • Li H, Zhang J, Zheng WS. Deep CNNs for HEp-2 Cells Classification: A Cross-specimen Analysis. arXiv preprint arXiv:160405816. 2016;.
  • 22
    • 84992476841 scopus 로고    scopus 로고
    • HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs. In: International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
    • Han XH, Lei J, Chen YW. HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs. In: International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer; 2016. p. 3–11.
    • Springer , vol.2016 , pp. 3-11
    • Han, X.H.1    Lei, J.2    Chen, Y.W.3
  • 24
    • 85032752311 scopus 로고    scopus 로고
    • Euclidean distance matrices: essential theory, algorithms, and applications
    • Dokmanic I, Parhizkar R, Ranieri J, Vetterli M, Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Processing Magazine. 2015;32(6):12–30. doi: 10.1109/MSP.2015.2398954
    • (2015) IEEE Signal Processing Magazine , vol.32 , Issue.6 , pp. 12-30
    • Dokmanic, I.1    Parhizkar, R.2    Ranieri, J.3    Vetterli, M.4
  • 25
    • 85032713013 scopus 로고    scopus 로고
    • Evaluation of Cell Types and Morphologies in Sickle Cell Disease with an Imaging Flow Cytometer
    • Ozpolat HT, Chang T, Chen J, Wu X, Norby C, Konkle BA, et al. Evaluation of Cell Types and Morphologies in Sickle Cell Disease with an Imaging Flow Cytometer. Blood. 2015;126(23):972–972.
    • (2015) Blood , vol.126 , Issue.23 , pp. 972
    • Ozpolat, H.T.1    Chang, T.2    Chen, J.3    Wu, X.4    Norby, C.5    Konkle, B.A.6
  • 27
    • 0037168535 scopus 로고    scopus 로고
    • Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer–couple hypothesis from membrane mechanics
    • HW GL, Wortis M, Mukhopadhyay R, Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer–couple hypothesis from membrane mechanics. Proceedings of the National Academy of Sciences. 2002;99(26):16766–16769. doi: 10.1073/pnas.202617299
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.26 , pp. 16766-16769
    • Hw, G.L.1    Wortis, M.2    Mukhopadhyay, R.3
  • 29
    • 84929503174 scopus 로고    scopus 로고
    • Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
    • Wong TT, Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition. 2015;48(9):2839–2846. doi: 10.1016/j.patcog.2015.03.009
    • (2015) Pattern Recognition , vol.48 , Issue.9 , pp. 2839-2846
    • Wong, T.T.1
  • 31
    • 0028606494 scopus 로고
    • Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease
    • Asakura T, Mattiello JA, Obata K, Asakura K, Reilly MP, Tomassini N, et al. Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease. Proceedings of the National Academy of Sciences. 1994;91(26):12589–12593. doi: 10.1073/pnas.91.26.12589
    • (1994) Proceedings of the National Academy of Sciences , vol.91 , Issue.26 , pp. 12589-12593
    • Asakura, T.1    Mattiello, J.A.2    Obata, K.3    Asakura, K.4    Reilly, M.P.5    Tomassini, N.6
  • 32
    • 28544433454 scopus 로고    scopus 로고
    • Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: Constancy of the percentage of sickled cells in individual patients during steady state
    • 1631525
    • Asakura T, Asakura K, Obata K, Mattiello J, Ballas SK, Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: Constancy of the percentage of sickled cells in individual patients during steady state. American journal of hematology. 2005;80(4):249–256. doi: 10.1002/ajh.20468 16315254
    • (2005) American journal of hematology , vol.80 , Issue.4 , pp. 249-256
    • Asakura, T.1    Asakura, K.2    Obata, K.3    Mattiello, J.4    Ballas, S.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.