-
2
-
-
84923769800
-
Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease
-
2525667
-
Fasano RM, Booth GS, Miles M, Du L, Koyama T, Meier ER, et al. Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease. British journal of haematology. 2015;168(2):291–300. doi: 10.1111/bjh.13123 25256676
-
(2015)
British journal of haematology
, vol.168
, Issue.2
, pp. 291-300
-
-
Fasano, R.M.1
Booth, G.S.2
Miles, M.3
Du, L.4
Koyama, T.5
Meier, E.R.6
-
3
-
-
84920703518
-
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
-
Abubakar I, Tillmann T, Banerjee A, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171. doi: 10.1016/S0140-6736(14)61682-2
-
(2015)
Lancet
, vol.385
, Issue.9963
, pp. 117-171
-
-
Abubakar, I.1
Tillmann, T.2
Banerjee, A.3
-
4
-
-
84903649037
-
Prediction of fetal hemoglobin in sickle cell anemia using an ensemble of genetic risk prediction models
-
.; p. CIRCGENETICS–113
-
Milton JN, Gordeuk VR, Taylor JG, Gladwin MT, Steinberg MH, Sebastiani P, Prediction of fetal hemoglobin in sickle cell anemia using an ensemble of genetic risk prediction models. Circulation: Cardiovascular Genetics. 2014; p. CIRCGENETICS–113.
-
(2014)
Circulation: Cardiovascular Genetics
-
-
Milton, J.N.1
Gordeuk, V.R.2
Taylor, J.G.3
Gladwin, M.T.4
Steinberg, M.H.5
Sebastiani, P.6
-
5
-
-
84988425865
-
Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography
-
2750589
-
Darrow MC, Zhang Y, Cinquin BP, Smith EA, Boudreau R, Rochat RH, et al. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography. J Cell Sci. 2016;129(18):3511–3517. doi: 10.1242/jcs.189225 27505892
-
(2016)
J Cell Sci
, vol.129
, Issue.18
, pp. 3511-3517
-
-
Darrow, M.C.1
Zhang, Y.2
Cinquin, B.P.3
Smith, E.A.4
Boudreau, R.5
Rochat, R.H.6
-
6
-
-
84900864121
-
Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease
-
2458563
-
van Beers EJ, Samsel L, Mendelsohn L, Saiyed R, Fertrin KY, Brantner CA, et al. Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease. American journal of hematology. 2014;89(6):598–603. doi: 10.1002/ajh.23699 24585634
-
(2014)
American journal of hematology
, vol.89
, Issue.6
, pp. 598-603
-
-
van Beers, E.J.1
Samsel, L.2
Mendelsohn, L.3
Saiyed, R.4
Fertrin, K.Y.5
Brantner, C.A.6
-
7
-
-
84937047444
-
iCut: an integrative cut algorithm enables accurate segmentation of touching cells
-
He Y, Gong H, Xiong B, Xu X, Li A, Jiang T, et al. iCut: an integrative cut algorithm enables accurate segmentation of touching cells. Scientific reports. 2015;5.
-
(2015)
Scientific reports
, vol.5
-
-
He, Y.1
Gong, H.2
Xiong, B.3
Xu, X.4
Li, A.5
Jiang, T.6
-
8
-
-
84941243510
-
Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering
-
2637099
-
Liu Z, Liu J, Xiao X, Yuan H, Li X, Chang J, et al. Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering. sensors. 2015;15(9):22561–22586. doi: 10.3390/s150922561 26370995
-
(2015)
sensors
, vol.15
, Issue.9
, pp. 22561-22586
-
-
Liu, Z.1
Liu, J.2
Xiao, X.3
Yuan, H.4
Li, X.5
Chang, J.6
-
9
-
-
84948090245
-
Detecting overlapping instances in microscopy images using extremal region trees
-
2598067
-
Arteta C, Lempitsky V, Noble JA, Zisserman A, Detecting overlapping instances in microscopy images using extremal region trees. Medical image analysis. 2016;27:3–16. doi: 10.1016/j.media.2015.03.002 25980675
-
(2016)
Medical image analysis
, vol.27
, pp. 3-16
-
-
Arteta, C.1
Lempitsky, V.2
Noble, J.A.3
Zisserman, A.4
-
11
-
-
33845792555
-
CellProfiler: image analysis software for identifying and quantifying cell phenotypes
-
1707689
-
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome biology. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100 17076895
-
(2006)
Genome biology
, vol.7
, Issue.10
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
Clarke, C.4
Kang, I.H.5
Friman, O.6
-
12
-
-
47049102271
-
CellTrack: an open-source software for cell tracking and motility analysis
-
1851146
-
Sacan A, Ferhatosmanoglu H, Coskun H, CellTrack: an open-source software for cell tracking and motility analysis. Bioinformatics. 2008;24(14):1647–1649. doi: 10.1093/bioinformatics/btn247 18511469
-
(2008)
Bioinformatics
, vol.24
, Issue.14
, pp. 1647-1649
-
-
Sacan, A.1
Ferhatosmanoglu, H.2
Coskun, H.3
-
13
-
-
84862520770
-
Fiji: an open-source platform for biological-image analysis
-
2274377
-
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019 22743772
-
(2012)
Nature methods
, vol.9
, Issue.7
, pp. 676-682
-
-
Schindelin, J.1
Arganda-Carreras, I.2
Frise, E.3
Kaynig, V.4
Longair, M.5
Pietzsch, T.6
-
14
-
-
84881123426
-
CellSegm-a MATLAB toolbox for high-throughput 3D cell segmentation
-
2393808
-
Hodneland E, Kögel T, Frei DM, Gerdes HH, Lundervold A, CellSegm-a MATLAB toolbox for high-throughput 3D cell segmentation. Source code for biology and medicine. 2013;8(1):16. doi: 10.1186/1751-0473-8-16 23938087
-
(2013)
Source code for biology and medicine
, vol.8
, Issue.1
, pp. 16
-
-
Hodneland, E.1
Kögel, T.2
Frei, D.M.3
Gerdes, H.H.4
Lundervold, A.5
-
15
-
-
84891956083
-
Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
-
Shekhar K, Brodin P, Davis MM, Chakraborty AK, Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proceedings of the National Academy of Sciences. 2014;111(1):202–207. doi: 10.1073/pnas.1321405111
-
(2014)
Proceedings of the National Academy of Sciences
, vol.111
, Issue.1
, pp. 202-207
-
-
Shekhar, K.1
Brodin, P.2
Davis, M.M.3
Chakraborty, A.K.4
-
16
-
-
84897107533
-
HEp-2 cell image classification with multiple linear descriptors
-
Liu L, Wang L, HEp-2 cell image classification with multiple linear descriptors. Pattern Recognition. 2014;47(7):2400–2408. doi: 10.1016/j.patcog.2013.09.022
-
(2014)
Pattern Recognition
, vol.47
, Issue.7
, pp. 2400-2408
-
-
Liu, L.1
Wang, L.2
-
17
-
-
84891139303
-
Sparse coding induced transfer learning for hep-2 cell classification
-
2421190
-
Liu A, Gao Z, Tong H, Su Y, Yang Z, Sparse coding induced transfer learning for hep-2 cell classification. Bio-medical materials and engineering. 2014;24(1):237–243. 24211903
-
(2014)
Bio-medical materials and engineering
, vol.24
, Issue.1
, pp. 237-243
-
-
Liu, A.1
Gao, Z.2
Tong, H.3
Su, Y.4
Yang, Z.5
-
18
-
-
84924509229
-
Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on
-
Donato C, Vincenzo T, Marco C, Francesco F, Maria VS, Giuseppe R. HEp-2 cell classification with heterogeneous classes-processes based on k-nearest neighbours. In: Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on. IEEE; 2014. p. 10–15.
-
IEEE
, vol.2014
, pp. 10-15
-
-
Donato, C.1
Vincenzo, T.2
Marco, C.3
Francesco, F.4
Maria, V.S.5
Giuseppe, R.6
-
19
-
-
84919414531
-
Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on
-
Gao Z, Zhang J, Zhou L, Wang L. Hep-2 cell image classification with convolutional neural networks. In: Pattern Recognition Techniques for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on. IEEE; 2014. p. 24–28.
-
IEEE
, vol.2014
, pp. 24-28
-
-
Gao, Z.1
Zhang, J.2
Zhou, L.3
Wang, L.4
-
20
-
-
85032716055
-
-
Li H, Zhang J, Zheng WS. Deep CNNs for HEp-2 Cells Classification: A Cross-specimen Analysis. arXiv preprint arXiv:160405816. 201
-
Li H, Zhang J, Zheng WS. Deep CNNs for HEp-2 Cells Classification: A Cross-specimen Analysis. arXiv preprint arXiv:160405816. 2016;.
-
-
-
-
21
-
-
84983372868
-
Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease
-
..; p. 201610435
-
Hosseini P, Abidi SZ, Du E, Papageorgiou DP, Choi Y, Park Y, et al. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proceedings of the National Academy of Sciences. 2016; p. 201610435. doi: 10.1073/pnas.1610435113
-
(2016)
Proceedings of the National Academy of Sciences
-
-
Hosseini, P.1
Abidi, S.Z.2
Du, E.3
Papageorgiou, D.P.4
Choi, Y.5
Park, Y.6
-
22
-
-
84992476841
-
HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs. In: International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
-
Han XH, Lei J, Chen YW. HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs. In: International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer; 2016. p. 3–11.
-
Springer
, vol.2016
, pp. 3-11
-
-
Han, X.H.1
Lei, J.2
Chen, Y.W.3
-
24
-
-
85032752311
-
Euclidean distance matrices: essential theory, algorithms, and applications
-
Dokmanic I, Parhizkar R, Ranieri J, Vetterli M, Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Processing Magazine. 2015;32(6):12–30. doi: 10.1109/MSP.2015.2398954
-
(2015)
IEEE Signal Processing Magazine
, vol.32
, Issue.6
, pp. 12-30
-
-
Dokmanic, I.1
Parhizkar, R.2
Ranieri, J.3
Vetterli, M.4
-
25
-
-
85032713013
-
Evaluation of Cell Types and Morphologies in Sickle Cell Disease with an Imaging Flow Cytometer
-
Ozpolat HT, Chang T, Chen J, Wu X, Norby C, Konkle BA, et al. Evaluation of Cell Types and Morphologies in Sickle Cell Disease with an Imaging Flow Cytometer. Blood. 2015;126(23):972–972.
-
(2015)
Blood
, vol.126
, Issue.23
, pp. 972
-
-
Ozpolat, H.T.1
Chang, T.2
Chen, J.3
Wu, X.4
Norby, C.5
Konkle, B.A.6
-
26
-
-
0028896264
-
Sickle cell rheology is determined by polymer fraction–not cell morphology
-
783218
-
Hiruma H, Noguchi CT, Uyesaka N, Hasegawa S, Blanchette-Mackie EJ, Schechter AN, et al. Sickle cell rheology is determined by polymer fraction–not cell morphology. American journal of hematology. 1995;48(1):19–28. doi: 10.1002/ajh.2830480105 7832188
-
(1995)
American journal of hematology
, vol.48
, Issue.1
, pp. 19-28
-
-
Hiruma, H.1
Noguchi, C.T.2
Uyesaka, N.3
Hasegawa, S.4
Blanchette-Mackie, E.J.5
Schechter, A.N.6
-
27
-
-
0037168535
-
Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer–couple hypothesis from membrane mechanics
-
HW GL, Wortis M, Mukhopadhyay R, Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer–couple hypothesis from membrane mechanics. Proceedings of the National Academy of Sciences. 2002;99(26):16766–16769. doi: 10.1073/pnas.202617299
-
(2002)
Proceedings of the National Academy of Sciences
, vol.99
, Issue.26
, pp. 16766-16769
-
-
Hw, G.L.1
Wortis, M.2
Mukhopadhyay, R.3
-
28
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R, Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research. 2014;15(1):1929–1958.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
29
-
-
84929503174
-
Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
-
Wong TT, Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition. 2015;48(9):2839–2846. doi: 10.1016/j.patcog.2015.03.009
-
(2015)
Pattern Recognition
, vol.48
, Issue.9
, pp. 2839-2846
-
-
Wong, T.T.1
-
31
-
-
0028606494
-
Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease
-
Asakura T, Mattiello JA, Obata K, Asakura K, Reilly MP, Tomassini N, et al. Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease. Proceedings of the National Academy of Sciences. 1994;91(26):12589–12593. doi: 10.1073/pnas.91.26.12589
-
(1994)
Proceedings of the National Academy of Sciences
, vol.91
, Issue.26
, pp. 12589-12593
-
-
Asakura, T.1
Mattiello, J.A.2
Obata, K.3
Asakura, K.4
Reilly, M.P.5
Tomassini, N.6
-
32
-
-
28544433454
-
Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: Constancy of the percentage of sickled cells in individual patients during steady state
-
1631525
-
Asakura T, Asakura K, Obata K, Mattiello J, Ballas SK, Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: Constancy of the percentage of sickled cells in individual patients during steady state. American journal of hematology. 2005;80(4):249–256. doi: 10.1002/ajh.20468 16315254
-
(2005)
American journal of hematology
, vol.80
, Issue.4
, pp. 249-256
-
-
Asakura, T.1
Asakura, K.2
Obata, K.3
Mattiello, J.4
Ballas, S.K.5
|