메뉴 건너뛰기




Volumn , Issue , 2017, Pages 409-414

Forecasting Influenza Levels Using Real-Time Social Media Streams

Author keywords

Influenza; Prediction; Public health; Social media

Indexed keywords

DISEASE CONTROL; DISEASES; FORECASTING; HEALTH CARE; PUBLIC HEALTH; SOCIAL NETWORKING (ONLINE);

EID: 85032392589     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICHI.2017.68     Document Type: Conference Paper
Times cited : (47)

References (29)
  • 4
    • 80053995894 scopus 로고    scopus 로고
    • Twitter mood as a stock market predictor
    • J. Bollen and H. Mao. Twitter mood as a stock market predictor. Computer, 44 (10): 91-94, 2011.
    • (2011) Computer , vol.44 , Issue.10 , pp. 91-94
    • Bollen, J.1    Mao, H.2
  • 5
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • 7436 Feb. 2013
    • D. Butler. When Google got flu wrong. Nature, 494 (7436): 155-156, Feb. 2013.
    • Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 6
    • 84897437057 scopus 로고    scopus 로고
    • The use of social networking sites for public health practice and research: A systematic review
    • Mar
    • D. Capurro, K. Cole, I. M. Echavarría, J. Joe, T. Neogi, and M. A. Turner. The Use of Social Networking Sites for Public Health Practice and Research: A Systematic Review. J Med Internet Res, 16 (3): e79, Mar 2014.
    • (2014) J Med Internet Res , vol.16 , Issue.3 , pp. e79
    • Capurro, D.1    Cole, K.2    Echavarría, I.M.3    Joe, J.4    Neogi, T.5    Turner, M.A.6
  • 8
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of twitter: Content analysis of tweets during the 2009 h1n1 outbreak
    • 11
    • C. Chew and G. Eysenbach. Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak. PLoS ONE, 5 (11): e14118, 11 2010.
    • (2010) PLoS ONE , vol.5 , Issue.11 , pp. e14118
    • Chew, C.1    Eysenbach, G.2
  • 9
    • 77958594601 scopus 로고    scopus 로고
    • Social network sensors for early detection of contagious outbreaks
    • N. A. Christakis and J. H. Fowler. Social network sensors for early detection of contagious outbreaks. PloS one, 5 (9): e12948, 2010.
    • (2010) PloS One , vol.5 , Issue.9 , pp. e12948
    • Christakis, N.A.1    Fowler, J.H.2
  • 10
    • 16544375294 scopus 로고    scopus 로고
    • Telephone triage: A timely data source for surveillance of influenza-like diseases
    • J. U. Espino, W. R. Hogan, and M. M. Wagner. Telephone triage: A timely data source for surveillance of influenza-like diseases. In AMIA Annual Symposium Proceedings, page 215, 2003.
    • (2003) AMIA Annual Symposium Proceedings , pp. 215
    • Espino, J.U.1    Hogan, W.R.2    Wagner, M.M.3
  • 11
    • 34748880596 scopus 로고    scopus 로고
    • Infodemiology: Tracking flu-related searches on the web for syndromic surveillance
    • G. Eysenbach. Infodemiology: Tracking flu-related searches on the web for syndromic surveillance. In AMIA Annual Symposium Proceedings, page 244, 2006.
    • (2006) AMIA Annual Symposium Proceedings , pp. 244
    • Eysenbach, G.1
  • 13
    • 84862897077 scopus 로고    scopus 로고
    • Web queries as a source for syndromic surveillance
    • A. Hulth, G. Rydevik, and A. Linde. Web queries as a source for syndromic surveillance. PloS one, 4 (2): e4378, 2009.
    • (2009) PloS One , vol.4 , Issue.2 , pp. e4378
    • Hulth, A.1    Rydevik, G.2    Linde, A.3
  • 16
    • 84923276281 scopus 로고    scopus 로고
    • Separating fact from fear: Tracking flu infections on twitter
    • A. Lamb, M. J. Paul, and M. Dredze. Separating Fact from Fear: Tracking Flu Infections on Twitter. In HLT-NAACL, pages 789-795, 2013.
    • (2013) HLT-NAACL , pp. 789-795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 21
    • 0242668659 scopus 로고    scopus 로고
    • Evaluation of over-the-counter pharmaceutical sales as a possible early warning indicator of human disease
    • S. Magruder. Evaluation of over-the-counter pharmaceutical sales as a possible early warning indicator of human disease. Johns Hopkins APL technical digest, 24 (4): 349-53, 2003.
    • (2003) Johns Hopkins APL Technical Digest , vol.24 , Issue.4 , pp. 349-353
    • Magruder, S.1
  • 22
    • 85085133306 scopus 로고    scopus 로고
    • You are what you tweet: Analyzing twitter for public health
    • M. J. Paul and M. Dredze. You Are What You Tweet: Analyzing Twitter for Public Health. In ICWSM, 2011.
    • (2011) ICWSM
    • Paul, M.J.1    Dredze, M.2
  • 23
    • 84872441447 scopus 로고    scopus 로고
    • FluBreaks: Early epidemic detection from google flu trends
    • Oct
    • F. Pervaiz, M. Pervaiz, N. Abdur Rehman, and U. Saif. FluBreaks: Early Epidemic Detection from Google Flu Trends. J Med Internet Res, 14 (5): e125, Oct 2012.
    • (2012) J Med Internet Res , vol.14 , Issue.5 , pp. e125
    • Pervaiz, F.1    Pervaiz, M.2    Abdur Rehman, N.3    Saif, U.4
  • 27
    • 79955757514 scopus 로고    scopus 로고
    • The use of twitter to track levels of disease activity and public concern in the u s. during the influenza a h1n1 pandemic
    • 05
    • A. Signorini, A. M. Segre, and P. M. Polgreen. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U. S. during the Influenza A H1N1 Pandemic. PLoS ONE, 6 (5): e19467, 05 2011.
    • (2011) PLoS ONE , vol.6 , Issue.5 , pp. e19467
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 29
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from baidu
    • 05
    • Q. Yuan, E. O. Nsoesie, B. Lv, G. Peng, R. Chunara, and J. S. Brownstein. Monitoring Influenza Epidemics in China with Search Query from Baidu. PLoS ONE, 8: e64323, 05 2013.
    • (2013) PLoS ONE , vol.8 , pp. e64323
    • Yuan, Q.1    Nsoesie, E.O.2    Lv, B.3    Peng, G.4    Chunara, R.5    Brownstein, J.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.