메뉴 건너뛰기




Volumn 24, Issue e1, 2017, Pages e121-e128

Assessing electronic health record phenotypes against gold-standard diagnostic criteria for diabetes mellitus

(33)  Spratt, Susan E a   Pereira, Katherine b   Granger, Bradi B b   Batch, Bryan C a   Phelan, Matthew c   Pencina, Michael a,c   Miranda, Marie Lynn d   Boulware, Ebony a   Lucas, Joseph E e   Nelson, Charlotte L c   Neely, Benjamin c   Goldstein, Benjamin A a,c   Barth, Pamela a   Richesson, Rachel L b   Riley, Isaretta L a   Corsino, Leonor a   McPeek Hinz, Eugenia R a   Rusincovitch, Shelley a   Green, Jennifer a   Barton, Anna Beth a   more..


Author keywords

diabetes identification; diabetes registries; EHR phenotypes

Indexed keywords

ARTICLE; DIABETIC PATIENT; ELECTRONIC HEALTH RECORD; GLUCOSE METABOLISM; HUMAN; HYPERGLYCEMIA; IMPAIRED GLUCOSE TOLERANCE; INTERMETHOD COMPARISON; MEDICAL RECORD REVIEW; NON INSULIN DEPENDENT DIABETES MELLITUS; PHENOTYPE; SENSITIVITY AND SPECIFICITY; ALGORITHM; BLOOD; DIABETES MELLITUS;

EID: 85031024709     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw123     Document Type: Article
Times cited : (42)

References (30)
  • 1
    • 84975856269 scopus 로고    scopus 로고
    • Economic costs of diabetes in the U.S in 2012
    • American Diabetes Association
    • American Diabetes Association. Economic costs of diabetes in the U.S in 2012. Diabetes Care. 2013;36:1033-46.
    • (2013) Diabetes Care , vol.36 , pp. 1033-1046
  • 2
    • 0027370108 scopus 로고
    • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus
    • The Diabetes Control and Complications Trial Research Group
    • The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977-86.
    • (1993) N Engl J Med , vol.329 , pp. 977-986
  • 3
    • 84909584471 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention. Atlanta, GA: US Department of Health and Human Services; . Accessed November 2, 2015
    • Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2014: Estimates of Diabetes and Its Burden in the United States. Atlanta, GA: US Department of Health and Human Services; 2014. http:// www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web. pdf. Accessed November 2, 2015.
    • (2014) National Diabetes Statistics Report, 2014: Estimates of Diabetes and Its Burden in the United States
  • 4
    • 84962420556 scopus 로고    scopus 로고
    • Classification and diagnosis of diabetes
    • American Diabetes Association
    • American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2016;39 (Suppl 1): S13-22.
    • (2016) Diabetes Care , vol.39 , pp. S13-22
  • 6
    • 0003526678 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention. Accessed May 8
    • Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System. http://www.cdc.gov/brfss/. Accessed May 8, 2015.
    • (2015) Behavioral Risk Factor Surveillance System
  • 7
    • 85030673252 scopus 로고    scopus 로고
    • US Department of Health and Human Services. Accessed February 16
    • US Department of Health and Human Services. HITECH Act Enforcement Interim Final Rule. http://www.hhs.gov/hipaa/for-professionals/specialtopics/ HITECH-act-enforcement-interim-final-rule/index.html. Accessed February 16, 2016.
    • (2016) HITECH Act Enforcement Interim Final Rule
  • 8
    • 84922421023 scopus 로고    scopus 로고
    • Trends in diabetes incidence among 7 million insured adults, 2006-2011: The SUPREME-DM project
    • Nichols GA, Schroeder EB, Karter AJ, et al. Trends in diabetes incidence among 7 million insured adults, 2006-2011: the SUPREME-DM project. Am J Epidemiol. 2015;181:32-9.
    • (2015) Am J Epidemiol , vol.181 , pp. 32-39
    • Nichols, G.A.1    Schroeder, E.B.2    Karter, A.J.3
  • 9
    • 40749113139 scopus 로고    scopus 로고
    • Identifying undiagnosed diabetes: Cross-sectional survey of 3.6 million patients' electronic records
    • Holt TA, Stables D, Hippisley-Cox J, et al. Identifying undiagnosed diabetes: cross-sectional survey of 3.6 million patients' electronic records. Br J Gen Pract. 2008;58:192-6.
    • (2008) Br J Gen Pract , vol.58 , pp. 192-196
    • Holt, T.A.1    Stables, D.2    Hippisley-Cox, J.3
  • 10
    • 2942573470 scopus 로고    scopus 로고
    • Usefulness of electronic databases for the detection of unrecognized diabetic patients
    • Vinker S, Fogelman Y, Elhayany A, et al. Usefulness of electronic databases for the detection of unrecognized diabetic patients. Cardiovasc Diabetol. 2003;2:13.
    • (2003) Cardiovasc Diabetol , vol.2 , pp. 13
    • Vinker, S.1    Fogelman, Y.2    Elhayany, A.3
  • 11
    • 84856895711 scopus 로고    scopus 로고
    • Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: Infrastructure for comparative effectiveness research and population health management
    • Kudyakov R, Bowen J, Ewen E, et al. Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: infrastructure for comparative effectiveness research and population health management. Popul Health Manag. 2012;15:3-11.
    • (2012) Popul Health Manag , vol.15 , pp. 3-11
    • Kudyakov, R.1    Bowen, J.2    Ewen, E.3
  • 12
    • 84896589751 scopus 로고    scopus 로고
    • Registry-based diabetes risk detection schema for the systematic identification of patients at risk for diabetes in West Virginia primary care centers
    • eCollection 2013
    • Baus A, Wood G, Pollard C, et al. Registry-based diabetes risk detection schema for the systematic identification of patients at risk for diabetes in West Virginia primary care centers. Perspect Health Inf Manag. 2013;10:1f. eCollection 2013.
    • (2013) Perspect Health Inf Manag , vol.10 , pp. 1f
    • Baus, A.1    Wood, G.2    Pollard, C.3
  • 13
    • 84860871724 scopus 로고    scopus 로고
    • The accuracy of using integrated electronic health care data to identify patients with undiagnosed diabetes mellitus
    • Ho ML, Lawrence N, van Walraven C, et al. The accuracy of using integrated electronic health care data to identify patients with undiagnosed diabetes mellitus. J Eval Clin Pract. 2012;18:606-11.
    • (2012) J Eval Clin Pract , vol.18 , pp. 606-611
    • Ho, M.L.1    Lawrence, N.2    Van Walraven, C.3
  • 14
    • 84865329277 scopus 로고    scopus 로고
    • Towards automatic diabetes case detection and ABCS protocol compliance assessment
    • Mishra NK, Son RY, Arnzen JJ. Towards automatic diabetes case detection and ABCS protocol compliance assessment. ClinMed Res. 2012;10:106-21.
    • (2012) ClinMed Res , vol.10 , pp. 106-121
    • Mishra, N.K.1    Son, R.Y.2    Arnzen, J.J.3
  • 15
    • 83055179540 scopus 로고    scopus 로고
    • Checking coding completeness by mining discharge summaries
    • Schultz S, Seddig T, Hanser S, et al. Checking coding completeness by mining discharge summaries. Stud Health Technol Inform. 2011;169:594-8.
    • (2011) Stud Health Technol Inform , vol.169 , pp. 594-598
    • Schultz, S.1    Seddig, T.2    Hanser, S.3
  • 16
    • 84875474595 scopus 로고    scopus 로고
    • Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data
    • Klompas M, Eggleston E, McVetta J, et al. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data. Diabetes Care. 2013;36:914-21.
    • (2013) Diabetes Care , vol.36 , pp. 914-921
    • Klompas, M.1    Eggleston, E.2    McVetta, J.3
  • 17
    • 0030800984 scopus 로고    scopus 로고
    • The diabetes audit and research in Tayside Scotland (DARTS) study: Electronic record linkage to create a diabetes register
    • Morris AD, Boyle DI, MacAlpine R, et al. The diabetes audit and research in Tayside Scotland (DARTS) study: electronic record linkage to create a diabetes register. DARTS/MEMO Collaboration. BMJ. 1997;315:524-8.
    • (1997) DARTS/MEMO Collaboration. BMJ , vol.315 , pp. 524-528
    • Morris, A.D.1    Boyle, D.I.2    MacAlpine, R.3
  • 18
    • 69949185194 scopus 로고    scopus 로고
    • Tracking diabetes: New York City's A1C Registry
    • Chamany S, Silver LD, Bassett MT, et al. Tracking diabetes: New York City's A1C Registry. Milbank Q. 2009;87:547-70.
    • (2009) Milbank Q , vol.87 , pp. 547-570
    • Chamany, S.1    Silver, L.D.2    Bassett, M.T.3
  • 19
    • 84923252822 scopus 로고    scopus 로고
    • Methods and initial findings from the Durham Diabetes Coalition: Integrating geospatial health technology and community interventions to reduce death and disability
    • Spratt SE, Batch BC, Davis LP, et al. Methods and initial findings from the Durham Diabetes Coalition: integrating geospatial health technology and community interventions to reduce death and disability. J Clin Transl Endocrinol. 2015;2:26-36.
    • (2015) J Clin Transl Endocrinol , vol.2 , pp. 26-36
    • Spratt, S.E.1    Batch, B.C.2    Davis, L.P.3
  • 20
    • 84866453294 scopus 로고    scopus 로고
    • Construction of a multisite DataLink using electronic health records for the identification, surveillance, prevention, and management of diabetes mellitus: The SUPREMEDM project
    • Nichols GA, Desai J, Elston Lafata J, et al. Construction of a multisite DataLink using electronic health records for the identification, surveillance, prevention, and management of diabetes mellitus: the SUPREMEDM project. Prev Chronic Dis. 2012;9:E110.
    • (2012) Prev Chronic Dis , vol.9 , pp. E110
    • Nichols, G.A.1    Desai, J.2    Elston Lafata, J.3
  • 21
    • 84862295530 scopus 로고    scopus 로고
    • Diabetes and asthma case identification, validation, and representativeness when using electronic health data to construct registries for comparative effectiveness and epidemiologic research
    • Desai JR Wu P, Nichols GA, et al. Diabetes and asthma case identification, validation, and representativeness when using electronic health data to construct registries for comparative effectiveness and epidemiologic research. Med Care. 2012;50 (Suppl):S30-5.
    • (2012) Med Care , vol.50 , pp. S30-S35
    • Desai, J.R.1    Wu, P.2    Nichols, G.A.3
  • 22
    • 4644265810 scopus 로고    scopus 로고
    • The role of research in integrated healthcare systems: The HMO Research Network
    • Vogt TM, Elston-Lafata J, Tolsma D, et al. The role of research in integrated healthcare systems: the HMO Research Network. Am J Manag Care. 2004;10:643-648.
    • (2004) Am J Manag Care , vol.10 , pp. 643-648
    • Vogt, T.M.1    Elston-Lafata, J.2    Tolsma, D.3
  • 24
    • 0020728415 scopus 로고
    • Assessment of diagnostic tests when disease verification is subject to selection bias
    • Begg CB, Greenes RA. Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics. 1983;39:207-15.
    • (1983) Biometrics , vol.39 , pp. 207-215
    • Begg, C.B.1    Greenes, R.A.2
  • 26
    • 85055614984 scopus 로고    scopus 로고
    • Redcap Accessed November 2 website.
    • REDCap website. https://redcap.vanderbilt.edu/. Accessed November 2, 2015.
    • (2015)
  • 27
    • 57649136472 scopus 로고    scopus 로고
    • Statistical methods to correct for verification bias in diagnostic studies are inadequate when there are few false negatives: A simulation study
    • Cronin AM, Vickers AJ. Statistical methods to correct for verification bias in diagnostic studies are inadequate when there are few false negatives: a simulation study. BMC Med Res Methodol. 2008;8:75.
    • (2008) BMC Med Res Methodol. , vol.8 , pp. 75
    • Cronin, A.M.1    Vickers, A.J.2
  • 29
    • 84890138156 scopus 로고    scopus 로고
    • Prevalence and characteristics in coding, classification and diagnosis of diabetes in primary care
    • Seidu S, Davies MJ, Mostafa S, et al. Prevalence and characteristics in coding, classification and diagnosis of diabetes in primary care. Postgrad Med J. 2014;90:13-17.
    • (2014) Postgrad Med J. , vol.90 , pp. 13-17
    • Seidu, S.1    Davies, M.J.2    Mostafa, S.3
  • 30
    • 84888413064 scopus 로고    scopus 로고
    • Data extraction from electronic health records-existing tools may be unreliable and potentially unsafe
    • Liaw ST, Taggart J, Yu H, et al. Data extraction from electronic health records-existing tools may be unreliable and potentially unsafe. Aust Fam Physician. 2013;42:820-3.
    • (2013) Aust Fam Physician. , vol.42 , pp. 820-823
    • Liaw, S.T.1    Taggart, J.2    Yu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.