메뉴 건너뛰기




Volumn 16, Issue 5s, 2017, Pages

Adaptive power management in solar energy harvesting sensor node using reinforcement learning

Author keywords

IoT; Power management; Reinforcement learning; Wireless sensor nodes

Indexed keywords

ELECTRIC BATTERIES; ENERGY HARVESTING; ENERGY MANAGEMENT; MANAGERS; POWER MANAGEMENT; SECONDARY BATTERIES; SENSOR NODES; SOLAR ENERGY; WEATHER FORECASTING;

EID: 85030676791     PISSN: 15399087     EISSN: 15583465     Source Type: Journal    
DOI: 10.1145/3126495     Document Type: Conference Paper
Times cited : (58)

References (23)
  • 2
    • 84877773769 scopus 로고    scopus 로고
    • A learning theoretic approach to energy harvesting communication system optimization
    • (2013)
    • Pol Blasco et al. 2013. A learning theoretic approach to energy harvesting communication system optimization. IEEE Tr. on Wireless Communications 12, 4 (2013), 1872-1882.
    • (2013) IEEE Tr. on Wireless Communications , vol.12 , Issue.4 , pp. 1872-1882
    • Blasco, P.1
  • 3
    • 84960421930 scopus 로고    scopus 로고
    • Adaptive duty cycling in sensor networks with energy harvesting using continuous-time markov chain and fluid models
    • (2015)
    • Wai Hong Ronald Chan et al. 2015. Adaptive duty cycling in sensor networks with energy harvesting using continuous-time Markov chain and fluid models. IEEE Journal on Selected Areas in Communications 33, 12 (2015), 2687-2700.
    • (2015) IEEE Journal on Selected Areas in Communications , vol.33 , Issue.12 , pp. 2687-2700
    • Ronald Chan, W.H.1
  • 4
    • 84893395903 scopus 로고    scopus 로고
    • Designing intelligent energy harvesting communication systems
    • (2014)
    • Deniz Gunduz, Kostas Stamatiou, Nicolo Michelusi, and Michele Zorzi. 2014. Designing intelligent energy harvesting communication systems. IEEE Communications Magazine 52, 1 (2014), 210-216.
    • (2014) IEEE Communications Magazine , vol.52 , Issue.1 , pp. 210-216
    • Gunduz, D.1    Stamatiou, K.2    Michelusi, N.3    Zorzi, M.4
  • 5
    • 34247183089 scopus 로고    scopus 로고
    • Adaptive duty cycling for energy harvesting systems
    • Jason Hsu et al. 2006. Adaptive duty cycling for energy harvesting systems. In Proc. of the 2006 ISLPED. 180-185.
    • (2006) Proc. of the 2006 ISLPED , pp. 180-185
    • Hsu, J.1
  • 6
    • 84930246293 scopus 로고    scopus 로고
    • A reinforcement learning-based ToD provisioning dynamic power management for sustainable operation of energy harvesting wireless sensor node
    • (2014)
    • Roy Chaoming Hsu et al. 2014. A Reinforcement Learning-Based ToD Provisioning Dynamic Power Management for Sustainable Operation of Energy Harvesting Wireless Sensor Node. IEEE Tr. on Emerging Topics in Computing 2, 2 (2014), 181-191.
    • (2014) IEEE Tr. on Emerging Topics in Computing , vol.2 , Issue.2 , pp. 181-191
    • Hsu, R.C.1
  • 7
    • 84949508359 scopus 로고    scopus 로고
    • Dynamic energy management of energy harvesting wireless sensor nodes using fuzzy inference system with reinforcement learning
    • Roy Chaoming Hsu et al. 2015. Dynamic energy management of energy harvesting wireless sensor nodes using fuzzy inference system with reinforcement learning. In IEEE 13th INDIN. 116-120.
    • (2015) IEEE 13th INDIN , pp. 116-120
    • Hsu, R.C.1
  • 9
    • 85016294846 scopus 로고    scopus 로고
    • Powermanagement in energy harvesting sensor networks
    • (2007)
    • Aman Kansal et al. 2007. Powermanagement in energy harvesting sensor networks. ACMTr. on Embedded Computing Systems 6, 4 (2007), 32.
    • (2007) ACMTr. on Embedded Computing Systems , vol.6 , Issue.4 , pp. 32
    • Kansal, A.1
  • 10
    • 8344248840 scopus 로고    scopus 로고
    • Performance aware tasking for environmentally powered sensor networks
    • (2004)
    • Aman Kansal, Dunny Potter, and Mani B. Srivastava. 2004. Performance aware tasking for environmentally powered sensor networks. ACM SIGMETRICS Performance Evaluation Review 32, 1 (2004), 223-234.
    • (2004) ACM SIGMETRICS Performance Evaluation Review , vol.32 , Issue.1 , pp. 223-234
    • Kansal, A.1    Potter, D.2    Srivastava, M.B.3
  • 11
    • 84927798837 scopus 로고    scopus 로고
    • Energy management in wireless sensor networks: A survey
    • (2015)
    • Junaid Ahmed Khan et al. 2015. Energy management in wireless sensor networks: a survey. Computers & Electrical Engineering 41 (2015), 159-176.
    • (2015) Computers & Electrical Engineering , vol.41 , pp. 159-176
    • Khan, J.A.1
  • 12
    • 84863027329 scopus 로고    scopus 로고
    • Dynamic power management utilizing reinforcement learning with fuzzy reward for energy harvesting wireless sensor nodes
    • Cheng-Ting Liu and Roy Chaoming Hsu. 2011. Dynamic power management utilizing reinforcement learning with fuzzy reward for energy harvesting wireless sensor nodes. In 37th Annual Conference on IEEE Industrial Electronics Society. 2365-2369.
    • (2011) 37th Annual Conference on IEEE Industrial Electronics Society , pp. 2365-2369
    • Liu, C.-T.1    Hsu, R.C.2
  • 13
    • 84858067521 scopus 로고    scopus 로고
    • Analysis of adaptability of reinforcement learning approach
    • S. Danish Maqbool et al. 2011. Analysis of adaptability of Reinforcement Learning approach. In IEEE 14th INMIC. 45-49.
    • (2011) IEEE 14th INMIC , pp. 45-49
    • Danish Maqbool, S.1
  • 14
    • 84891590427 scopus 로고    scopus 로고
    • Energy management policies for harvesting-based wireless sensor devices with battery degradation
    • (2013)
    • Nicolo Michelusi et al. 2013. Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Tr. on Communications 61, 12 (2013), 4934-4947.
    • (2013) IEEE Tr. on Communications , vol.61 , Issue.12 , pp. 4934-4947
    • Michelusi, N.1
  • 15
    • 84981313231 scopus 로고    scopus 로고
    • Reinforcement learning for energy harvesting point-to-point communications
    • Andrea Ortiz et al. 2016. Reinforcement learning for energy harvesting point-to-point communications. In 2016 IEEE International Conference on Communications. 1-6.
    • (2016) 2016 IEEE International Conference on Communications , pp. 1-6
    • Ortiz, A.1
  • 17
    • 84881415659 scopus 로고    scopus 로고
    • A bird's eye view on reinforcement learning approaches for power management in WSNs
    • Luigi Rucco et al. 2013. A bird's eye view on reinforcement learning approaches for power management in WSNs. In 6th WMNC. 1-8.
    • (2013) 6th WMNC , pp. 1-8
    • Rucco, L.1
  • 18
    • 77955103680 scopus 로고    scopus 로고
    • Cloudy computing: Leveraging weather forecasts in energy harvesting sensor systems
    • Navin Sharma et al. 2010. Cloudy computing: Leveraging weather forecasts in energy harvesting sensor systems. In 7th IEEE SECON. 1-9.
    • (2010) 7th IEEE SECON , pp. 1-9
    • Sharma, N.1
  • 19
    • 79959289243 scopus 로고    scopus 로고
    • Energy harvesting sensor nodes: Survey and implications
    • (2011)
    • Sujesha Sudevalayam and Purushottam Kulkarni. 2011. Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials 13, 3 (2011), 443-461.
    • (2011) IEEE Communications Surveys & Tutorials , vol.13 , Issue.3 , pp. 443-461
    • Sudevalayam, S.1    Kulkarni, P.2
  • 20
    • 77955724733 scopus 로고    scopus 로고
    • Event-driven adaptive duty-cycling in sensor networks
    • (2009)
    • Srikanth Sundaresan et al. 2009. Event-driven adaptive duty-cycling in sensor networks. International Journal of Sensor Networks 6, 2 (2009), 89-100.
    • (2009) International Journal of Sensor Networks , vol.6 , Issue.2 , pp. 89-100
    • Sundaresan, S.1
  • 21
    • 0026852362 scopus 로고
    • Reinforcement learning is direct adaptive optimal control
    • (1992)
    • Richard S. Sutton et al. 1992. Reinforcement learning is direct adaptive optimal control. IEEE Control Systems 12, 2 (1992), 19-22.
    • (1992) IEEE Control Systems , vol.12 , Issue.2 , pp. 19-22
    • Sutton, R.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.