메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide

Author keywords

[No Author keywords available]

Indexed keywords

HYDROGEN PEROXIDE; TIN; TITANIUM DIOXIDE; TUNGSTEN; WATER;

EID: 85030031416     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-017-00585-6     Document Type: Article
Times cited : (379)

References (46)
  • 2
    • 84888206104 scopus 로고    scopus 로고
    • 2 production through rational electrocatalyst design
    • 2 production through rational electrocatalyst design. Nat. Mater. 12, 1137-1143 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 1137-1143
    • Siahrostami, S.1
  • 3
    • 84896339164 scopus 로고    scopus 로고
    • 2: Enhancing activity and selectivity by electrocatalytic site engineering
    • 2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603-1608 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1603-1608
    • Verdaguer-Casadevall, A.1
  • 4
    • 84857843855 scopus 로고    scopus 로고
    • Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide
    • Fellinger, T.-P., Hasche, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072-4075 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 4072-4075
    • Fellinger, T.-P.1    Hasche, F.2    Strasser, P.3    Antonietti, M.4
  • 5
    • 84920025647 scopus 로고    scopus 로고
    • Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface
    • Choi, C. H. et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063-30070 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 30063-30070
    • Choi, C.H.1
  • 6
    • 84907811277 scopus 로고    scopus 로고
    • Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon
    • Park, J., Nabae, Y., Hayakawa, T. & Kakimoto, M. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749-3754 (2014).
    • (2014) ACS Catal. , vol.4 , pp. 3749-3754
    • Park, J.1    Nabae, Y.2    Hayakawa, T.3    Kakimoto, M.4
  • 7
    • 84960448205 scopus 로고    scopus 로고
    • Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
    • Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10922
    • Choi, C.H.1
  • 8
    • 84965134629 scopus 로고    scopus 로고
    • Seawater usable for production and consumption of hydrogen peroxide as a solar fuel
    • Mase, K., Yoneda, M., Yamada, Y., Fukuzumi, S. & Klug, D. R. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11470
    • Mase, K.1    Yoneda, M.2    Yamada, Y.3    Fukuzumi, S.4    Klug, D.R.5
  • 9
    • 85011823989 scopus 로고    scopus 로고
    • Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a Cobalt(II) chlorin complex
    • Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a Cobalt(II) chlorin complex. ACS Energy Lett. 1, 913-919 (2016).
    • (2016) ACS Energy Lett. , vol.1 , pp. 913-919
    • Mase, K.1    Yoneda, M.2    Yamada, Y.3    Fukuzumi, S.4
  • 10
    • 84867635754 scopus 로고    scopus 로고
    • Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst
    • Izgorodin, A., Izgorodina, E. & MacFarlane, D. R. Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst. Energy Environ. Sci. 5, 9496 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9496
    • Izgorodin, A.1    Izgorodina, E.2    MacFarlane, D.R.3
  • 11
    • 84980471065 scopus 로고    scopus 로고
    • Ion effects in water oxidation to hydrogen peroxide
    • McDonnell-Worth, C. & MacFarlane, D. R. Ion effects in water oxidation to hydrogen peroxide. RSC Adv. 4, 30551 (2014).
    • (2014) RSC Adv. , vol.4 , pp. 30551
    • McDonnell-Worth, C.1    MacFarlane, D.R.2
  • 13
    • 84946593616 scopus 로고    scopus 로고
    • Selective electrochemical generation of hydrogen peroxide from water oxidation
    • Viswanathan, V., Hansen, H. A. & Nørskov, J. K. Selective electrochemical generation of hydrogen peroxide from water oxidation. J. Phys. Chem. Lett. 6, 4224-4228 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 4224-4228
    • Viswanathan, V.1    Hansen, H.A.2    Nørskov, J.K.3
  • 14
    • 84964543865 scopus 로고    scopus 로고
    • Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/ bismuth vanadate photoanode
    • Fuku, K. et al. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/ bismuth vanadate photoanode. Chem. Commun. 52, 5406-5409 (2016).
    • (2016) Chem. Commun. , vol.52 , pp. 5406-5409
    • Fuku, K.1
  • 15
    • 84947998868 scopus 로고    scopus 로고
    • Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy) hydroxides: Activity trends and design principles
    • Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy) hydroxides: activity trends and design principles. Chem. Mater. 27, 7549-7558 (2015).
    • (2015) Chem. Mater. , vol.27 , pp. 7549-7558
    • Burke, M.S.1    Enman, L.J.2    Batchellor, A.S.3    Zou, S.4    Boettcher, S.W.5
  • 16
    • 84864631122 scopus 로고    scopus 로고
    • Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials
    • Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2, 1765-1772 (2012).
    • (2012) ACS Catal , vol.2 , pp. 1765-1772
    • Reier, T.1    Oezaslan, M.2    Strasser, P.3
  • 17
    • 84956900413 scopus 로고    scopus 로고
    • Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes
    • Cheng, Y. & Jiang, S. P. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog. Nat. Sci. Mater. Int. 25, 545-553 (2015).
    • (2015) Prog. Nat. Sci. Mater. Int. , vol.25 , pp. 545-553
    • Cheng, Y.1    Jiang, S.P.2
  • 18
    • 84941045535 scopus 로고    scopus 로고
    • Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction
    • Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T. M. & Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal 5, 5380-5387 (2015).
    • (2015) ACS Catal , vol.5 , pp. 5380-5387
    • Diaz-Morales, O.1    Ledezma-Yanez, I.2    Koper, M.T.M.3    Calle-Vallejo, F.4
  • 19
    • 84907816043 scopus 로고    scopus 로고
    • Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
    • Fabbri, E., Habereder, A., Waltar, K., Kotz, R. & Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800-3821 (2014).
    • (2014) Catal. Sci. Technol. , vol.4 , pp. 3800-3821
    • Fabbri, E.1    Habereder, A.2    Waltar, K.3    Kotz, R.4    Schmidt, T.J.5
  • 20
    • 84922005526 scopus 로고    scopus 로고
    • A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
    • Gong, M. & Dai, H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8,23-39 (2014).
    • (2014) Nano Res. , vol.8 , pp. 23-39
    • Gong, M.1    Dai, H.2
  • 21
    • 84981320954 scopus 로고    scopus 로고
    • Iridium-based double perovskites for efficient water oxidation in acid media
    • Diaz-Morales, O. et al. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 7, 12363 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 12363
    • Diaz-Morales, O.1
  • 22
    • 84863011992 scopus 로고    scopus 로고
    • 2 nanoparticles for oxygen evolution in acid and alkaline solutions
    • Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399-404 (2012).
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 399-404
    • Lee, Y.1    Suntivich, J.2    May, K.J.3    Perry, E.E.4    Shao-Horn, Y.5
  • 23
    • 84978153464 scopus 로고    scopus 로고
    • NiFe-based (oxy) hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes
    • Dionigi, F. & Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016)
    • (2016) Adv. Energy Mater. , vol.6 , pp. 1600621
    • Dionigi, F.1    Strasser, P.2
  • 24
    • 84997051808 scopus 로고    scopus 로고
    • Electrocatalytic oxygen evolution reaction in acidic environments - Reaction mechanisms and catalysts
    • Reier, T., Nong, H. N., Teschner, D., Schlogl, R. & Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments - reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2016).
    • (2016) Adv. Energy Mater. , vol.7 , pp. 1601275
    • Reier, T.1    Nong, H.N.2    Teschner, D.3    Schlogl, R.4    Strasser, P.5
  • 25
    • 85018753440 scopus 로고    scopus 로고
    • The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation
    • Spoeri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. 56, 5994-6021 (2017).
    • (2017) Angew. Chem. , vol.56 , pp. 5994-6021
    • Spoeri, C.1    Kwan, J.T.H.2    Bonakdarpour, A.3    Wilkinson, D.4    Strasser, P.5
  • 26
    • 84940370995 scopus 로고    scopus 로고
    • Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH
    • Han, B. et al. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Phys. Chem. Chem. Phys. 17, 22576-22580 (2015).
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 22576-22580
    • Han, B.1
  • 27
    • 84954441705 scopus 로고    scopus 로고
    • Descriptors of oxygen-evolution activity for oxides: A statistical evaluation
    • Hong, W. T., Welsch, R. E. & Shao-Horn, Y. Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120,78-86 (2016).
    • (2016) J. Phys. Chem. C , vol.120 , pp. 78-86
    • Hong, W.T.1    Welsch, R.E.2    Shao-Horn, Y.3
  • 28
    • 84948002938 scopus 로고    scopus 로고
    • Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: Intrinsic activity and the roles of electrical conductivity, substrate, and dissolution
    • Zou, S. et al. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011-8020 (2015).
    • (2015) Chem. Mater. , vol.27 , pp. 8011-8020
    • Zou, S.1
  • 29
    • 84982719995 scopus 로고    scopus 로고
    • Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media
    • Burke, M. S. et al. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6, 3737-3742 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 3737-3742
    • Burke, M.S.1
  • 30
    • 85018271582 scopus 로고    scopus 로고
    • 2 on an Au cathode without external bias
    • 2 on an Au cathode without external bias. Chem. Asian J. 12, 1111-1119 (2017).
    • (2017) Chem. Asian J. , vol.12 , pp. 1111-1119
    • Fuku, K.1
  • 31
    • 85019798998 scopus 로고    scopus 로고
    • Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides
    • Fuku, K., Miyase, Y., Miseki, Y., Gunji, T. & Sayama, K. Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect 1, 5721-5726 (2016).
    • (2016) ChemistrySelect , vol.1 , pp. 5721-5726
    • Fuku, K.1    Miyase, Y.2    Miseki, Y.3    Gunji, T.4    Sayama, K.5
  • 32
    • 2542501376 scopus 로고    scopus 로고
    • 2 particles
    • GOTO H.
    • 2 particles. J. Catal. 225, 223-229 (2004).
    • (2004) J. Catal. , vol.225 , pp. 223-229
  • 34
    • 0141564586 scopus 로고    scopus 로고
    • Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles
    • Cai, R., Kubota, Y. & Fujishima, A. Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 219, 214-218 (2003).
    • (2003) J. Catal. , vol.219 , pp. 214-218
    • Cai, R.1    Kubota, Y.2    Fujishima, A.3
  • 35
    • 84872858568 scopus 로고    scopus 로고
    • 2 photocatalysts in aqueous suspension
    • 2 photocatalysts in aqueous suspension. J. Phys. Chem. C 117, 1383-1391 (2013).
    • (2013) J. Phys. Chem. C , vol.117 , pp. 1383-1391
    • Zhang, J.1    Nosaka, Y.2
  • 36
    • 84906234277 scopus 로고    scopus 로고
    • Sunscreens as a source of hydrogen peroxide production in coastal waters
    • Sanchez-Quiles, D. & Tovar-Sanchez, A. Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ. Sci. Technol. 48, 9037-9042 (2014).
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 9037-9042
    • Sanchez-Quiles, D.1    Tovar-Sanchez, A.2
  • 37
    • 85011105461 scopus 로고    scopus 로고
    • 4 photocatalyst
    • 4 photocatalyst. RSC Adv. 7, 9130-9140 (2017).
    • (2017) RSC Adv. , vol.7 , pp. 9130-9140
    • Li, G.-L.1
  • 38
    • 80051809046 scopus 로고    scopus 로고
    • Universality in oxygen evolution electrocatalysis on oxide surfaces
    • Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159-1165 (2011).
    • (2011) ChemCatChem , vol.3 , pp. 1159-1165
    • Man, I.C.1
  • 40
    • 84949117608 scopus 로고    scopus 로고
    • Theoretical evaluation ofthe surface electrochemistry ofperovskites with promising photon absorption properties for solar water splitting
    • Montoya, J. H., Garcia-Mota, M., Norskov, J. K. & Vojvodic, A. Theoretical evaluation ofthe surface electrochemistry ofperovskites with promising photon absorption properties for solar water splitting. Phys. Chem. Chem. Phys. 17, 2634-2640 (2015).
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 2634-2640
    • Montoya, J.H.1    Garcia-Mota, M.2    Norskov, J.K.3    Vojvodic, A.4
  • 41
    • 9744261716 scopus 로고    scopus 로고
    • Origin of the overpotential for oxygen reduction at a fuel-cell cathode
    • Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886-17892 (2004).
    • (2004) J. Phys. Chem. B , vol.108 , pp. 17886-17892
    • Norskov, J.K.1
  • 44
    • 0344873147 scopus 로고    scopus 로고
    • 4 film electrodes under visible light
    • 4 film electrodes under visible light. Chem. Commun. 365, 2908 (2003).
    • (2003) Chem. Commun. , vol.365 , pp. 2908
    • Sayama, K.1
  • 46
    • 84894148262 scopus 로고    scopus 로고
    • 4 Core/Shell nanowire photoanode for photoelectrochemical water oxidation
    • 4 Core/Shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099-1105 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1099-1105
    • Rao, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.