-
1
-
-
84979284605
-
-
version 1.2. Agisoft, St. Petersburg, Russia, 14 Dec. 2016
-
Agisoft. 2016. Agisoft PhotoScan user manual: Professional edition, version 1.2. Agisoft, St. Petersburg, Russia. http://www.agisoft. com/pdf/photoscan-pro_1_2_en.pdf(accessed 14 Dec. 2016).
-
(2016)
Agisoft Photoscan User Manual: Professional Edition
-
-
-
2
-
-
85018988028
-
Crop phenology based on MODIS satellite imagery as an indicator of plant available water content
-
Adelaide, Australia. 1–6 Dec. 2013. The Modelling and Simulation Society of Australia and New Zealand
-
Araya, S., B. Ostendorf, G. Lyle, and M. Lewis. 2013. Crop phenology based on MODIS satellite imagery as an indicator of plant available water content. In: Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia. 1–6 Dec. 2013. The Modelling and Simulation Society of Australia and New Zealand. p. 1896–1902.
-
(2013)
Proceedings of the 20Th International Congress on Modelling and Simulation
, pp. 1896-1902
-
-
Araya, S.1
Ostendorf, B.2
Lyle, G.3
Lewis, M.4
-
3
-
-
0008785413
-
Plant growth component
-
USDA, West Lafayette, IN
-
Arnold, J.G., M.A. Weltz, E.E. Alberts, and D.C. Flanagan. 1995. Plant growth component. In: USDA Water Erosion Prediction Project: Tech. Rep. no. 10. USDA, West Lafayette, IN. p. 8.1–8.41.
-
(1995)
USDA Water Erosion Prediction Project: Tech. Rep
, vol.10
, pp. 1-8
-
-
Arnold, J.G.1
Weltz, M.A.2
Alberts, E.E.3
Flanagan, D.C.4
-
4
-
-
33644970528
-
Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation
-
Babar, M.A., M.P. Reynolds, M. Van Ginkel, A.R. Klatt, W.R. Raun, and M.L. Stone. 2006a. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 46:578–588. doi:10.2135/cropsci2005.0059
-
(2006)
Crop Sci
, vol.46
, pp. 578-588
-
-
Babar, M.A.1
Reynolds, M.P.2
Van Ginkel, M.3
Klatt, A.R.4
Raun, W.R.5
Stone, M.L.6
-
5
-
-
33748664197
-
The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation
-
Babar, M.A., M. van Ginkel, R. Klatt, B. Prasad, and M.P. Reynolds. 2006b. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 150:155–172. doi:10.1007/s10681-006-9104-9
-
(2006)
Euphytica
, vol.150
, pp. 155-172
-
-
Babar, M.A.1
Van Ginkel, M.2
Klatt, R.3
Prasad, B.4
Reynolds, M.P.5
-
6
-
-
84923019894
-
-
Cornell Univ. Library, Ithaca, NY
-
Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. lme4: Linear mixed-effects models using lme4. Cornell Univ. Library, Ithaca, NY.
-
(2014)
Lme4: Linear Mixed-Effects Models Using Lme4
-
-
Bates, D.1
Maechler, M.2
Bolker, B.3
Walker, S.4
-
7
-
-
0344580385
-
Guide to plant and crop sampling: Measurements and observations for agronomic and physiological research in small grain cereals
-
CIMMYT, Mexico, DF
-
Bell, M.A., E. Stations, R.A. Fischer, and W. Program. 1994. Guide to plant and crop sampling: Measurements and observations for agronomic and physiological research in small grain cereals. Wheat Spec. Rep. 32. CIMMYT, Mexico, DF.
-
(1994)
Wheat Spec. Rep
, pp. 32
-
-
Bell, M.A.1
Stations, E.2
Fischer, R.A.3
Program, W.4
-
8
-
-
0030443181
-
CIMMYT’s approach to breeding for wide adaptation
-
Braun, H.J., S. Rajaram, and M. Ginkel. 1996. CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175– 183. doi:10.1007/BF00022843
-
(1996)
Euphytica
, vol.92
, pp. 175-183
-
-
Braun, H.J.1
Rajaram, S.2
Ginkel, M.3
-
9
-
-
6144231228
-
Geographically weighted regression: A method for exploring spatial nonstationary
-
Brunsdon, C., A.S. Fotheringham, and M.E. Charlton. 1996. Geographically weighted regression: A method for exploring spatial nonstationary. Geogr. Anal. 28:281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
-
(1996)
Geogr. Anal.
, vol.28
, pp. 281-298
-
-
Brunsdon, C.1
Fotheringham, A.S.2
Charlton, M.E.3
-
10
-
-
84875426911
-
Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement
-
Cobb, J.N., G. DeClerck, A. Greenberg, R. Clark, and S. McCouch. 2013. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126:867–887. doi:10.1007/s00122-013-2066-0
-
(2013)
Theor. Appl. Genet.
, vol.126
, pp. 867-887
-
-
Cobb, J.N.1
Declerck, G.2
Greenberg, A.3
Clark, R.4
McCouch, S.5
-
11
-
-
85014703620
-
Utilizing high-throughput phenotypic data for improved phenotypic selection of stress adaptive traits in wheat
-
Crain, J.L., M.P. Reynolds, and J.A. Poland. 2016. Utilizing high-throughput phenotypic data for improved phenotypic selection of stress adaptive traits in wheat. Crop Sci. 57:648–659. doi:10.2135/cropsci2016.02.0135
-
(2016)
Crop Sci.
, vol.57
, pp. 648-659
-
-
Crain, J.L.1
Reynolds, M.P.2
Poland, J.A.3
-
12
-
-
84908509157
-
Proximal remote sensing buggies and potential applications for field-based phenotyping
-
Deery, D., J. Jimenez-Berni, H. Jones, X. Sirault, and R. Furbank. 2014. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379. doi:10.3390/agronomy4030349
-
(2014)
Agronomy
, vol.4
, pp. 349-379
-
-
Deery, D.1
Jimenez-Berni, J.2
Jones, H.3
Sirault, X.4
Furbank, R.5
-
14
-
-
79955783956
-
A robust, simple genotyping-by-sequencing (Gbs) approach for high diversity species
-
Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, and S.E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379
-
(2011)
Plos One
, vol.6
-
-
Elshire, R.J.1
Glaubitz, J.C.2
Sun, Q.3
Poland, J.A.4
Kawamoto, K.5
Buckler, E.S.6
Mitchell, S.E.7
-
17
-
-
84928733872
-
Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier: A case of Yuyao, China
-
Feng, Q., J. Liu, and J. Gong. 2015. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier: A case of Yuyao, China. Water 7:1437–1455. doi:10.3390/w7041437
-
(2015)
Water
, vol.7
, pp. 1437-1455
-
-
Feng, Q.1
Liu, J.2
Gong, J.3
-
18
-
-
80054981256
-
Solutions for a cultivated planet
-
Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston et al. 2011. Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452
-
(2011)
Nature
, vol.478
, pp. 337-342
-
-
Foley, J.A.1
Ramankutty, N.2
Brauman, K.A.3
Cassidy, E.S.4
Gerber, J.S.5
Johnston, M.6
-
20
-
-
0000356520
-
Accounting for natural and extraneous variation in the analysis of field experiments
-
Gilmour, A.R., B.R. Cullis, and A.P. Verbyla. 1997. Accounting for natural and extraneous variation in the analysis of field experiments. J. Agric. Biol. Environ. Stat. 2:269–273. doi:10.2307/1400446
-
(1997)
J. Agric. Biol. Environ. Stat.
, vol.2
, pp. 269-273
-
-
Gilmour, A.R.1
Cullis, B.R.2
Verbyla, A.P.3
-
21
-
-
84941422340
-
Applying high-throughput phenotyping to plant–insect interactions: Picturing more resistant crops
-
Goggin, F.L., A. Lorence, and C.N. Topp. 2015. Applying high-throughput phenotyping to plant–insect interactions: Picturing more resistant crops. Curr. Opin. Insect Sci. 9:69–76. doi:10.1016/j.cois.2015.03.002
-
(2015)
Curr. Opin. Insect Sci.
, vol.9
, pp. 69-76
-
-
Goggin, F.L.1
Lorence, A.2
Topp, C.N.3
-
24
-
-
84975755388
-
Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries
-
Haghighattalab, A., L. González Pérez, S. Mondal, D. Singh, D. Schinstock, J. Rutkoski et al. 2016. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:35. doi:10.1186/s13007-016-0134-6
-
(2016)
Plant Methods
, vol.12
, pp. 35
-
-
Haghighattalab, A.1
González Pérez, L.2
Mondal, S.3
Singh, D.4
Schinstock, D.5
Rutkoski, J.6
-
25
-
-
0037734547
-
Estimating and interpreting heritability for plant breeding: An update
-
Holland, J., W. Nyquist, and C. Cervantes-Martinez. 2003. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 22:9–112. doi:10.1002/9780470650202.ch2
-
(2003)
Plant Breed. Rev.
, vol.22
, pp. 9-112
-
-
Holland, J.1
Nyquist, W.2
Cervantes-Martinez, C.3
-
26
-
-
84870717321
-
Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle
-
Hruska, R., J. Mitchell, M. Anderson, and N.F. Glenn. 2012. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens. 4:2736–2752. doi:10.3390/rs4092736
-
(2012)
Remote Sens
, vol.4
, pp. 2736-2752
-
-
Hruska, R.1
Mitchell, J.2
Anderson, M.3
Glenn, N.F.4
-
27
-
-
34249821654
-
Incorporating spatial non-sta-tionarity of regression coefficients into predictive vegetation models
-
Kupfer, J.A., and C.A. Farris. 2007. Incorporating spatial non-sta-tionarity of regression coefficients into predictive vegetation models. Landscape Ecol. 22:837–852. doi:10.1007/s10980-006-9058-2
-
(2007)
Landscape Ecol
, vol.22
, pp. 837-852
-
-
Kupfer, J.A.1
Farris, C.A.2
-
28
-
-
84928266341
-
Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach
-
Liebisch, F., N. Kirchgessner, D. Schneider, A. Walter, and A. Hund. 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11:9. doi:10.1186/s13007-015-0048-8
-
(2015)
Plant Methods
, vol.11
, pp. 9
-
-
Liebisch, F.1
Kirchgessner, N.2
Schneider, D.3
Walter, A.4
Hund, A.5
-
29
-
-
84859974450
-
Stay-green in spring wheat can be determined by spectral reflectance measurements (Nor-malized difference vegetation index) independently from phenology
-
Lopes, M.S., and M.P. Reynolds. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (nor-malized difference vegetation index) independently from phenology. J. Exp. Bot. 63:3789–3798. doi:10.1093/jxb/ers071
-
(2012)
J. Exp. Bot.
, vol.63
, pp. 3789-3798
-
-
Lopes, M.S.1
Reynolds, M.P.2
-
30
-
-
84894273575
-
Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data
-
Lu, B., M. Charlton, P. Harris, and A. Stewart. 2014a. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 28:660–681. doi:10.1080/13658816.2013.865739
-
(2014)
Int. J. Geogr. Inf. Sci.
, vol.28
, pp. 660-681
-
-
Lu, B.1
Charlton, M.2
Harris, P.3
Stewart, A.4
-
31
-
-
84901651260
-
The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models
-
Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014b. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geospatial Inf. Sci. 17:85–101.
-
(2014)
Geospatial Inf. Sci.
, vol.17
, pp. 85-101
-
-
Lu, B.1
Harris, P.2
Charlton, M.3
Brunsdon, C.4
-
32
-
-
0036326469
-
Large area operational wheat yield model development and validation based on spectral and meteorological data
-
Manjunath, K.R., M.B. Potdar, and N.L. Purohit. 2002. Large area operational wheat yield model development and validation based on spectral and meteorological data. Int. J. Remote Sensing 23:3023–3038. doi:10.1080/01431160110104692
-
(2002)
Int. J. Remote Sensing
, vol.23
, pp. 3023-3038
-
-
Manjunath, K.R.1
Potdar, M.B.2
Purohit, N.L.3
-
33
-
-
33845758913
-
Mapping the results of geographically weighted regression
-
Mennis, J. 2006. Mapping the results of geographically weighted regression. Cartogr. J. 43:171–179. doi:10.1179/000870406X114658
-
(2006)
Cartogr. J.
, vol.43
, pp. 171-179
-
-
Mennis, J.1
-
34
-
-
33846829987
-
The pls package: Principal component and partial least squares regression in R
-
Mevik, B.H., and R. Wehrens. 2007. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 18:1–23. doi:10.18637/jss.v018.i02
-
(2007)
J. Stat. Softw.
, vol.18
, pp. 1-23
-
-
Mevik, B.H.1
Wehrens, R.2
-
35
-
-
85029582141
-
Pls: Partial least squares and principal component regression
-
Mevik, B.H., R. Wehrens, and K.H. Liland. 2013. pls: Partial least squares and principal component regression. R Foundation for Statistical Computing, Vienna, Austria.
-
(2013)
R Foundation for Statistical Computing, Vienna, Austria
-
-
Mevik, B.H.1
Wehrens, R.2
Liland, K.H.3
-
36
-
-
85029599425
-
-
Spatial measurements and statistics. ESRI Press, Redlands, CA
-
Mitchell, A. 2005. The ESRI guide to GIS analysis. Vol. 2: Spatial measurements and statistics. ESRI Press, Redlands, CA.
-
(2005)
The ESRI Guide to GIS Analysis
, vol.2
-
-
Mitchell, A.1
-
37
-
-
78651435852
-
Crop yield forecasting on the Canadian prairies using MODIS NDVI data
-
Mkhabela, M.S., P. Bullock, S. Raj, S. Wang, and Y. Yang. 2011. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meteorol. 151:385–393. doi:10.1016/j. agrformet.2010.11.012
-
(2011)
Agric. For. Meteorol.
, vol.151
, pp. 385-393
-
-
Mkhabela, M.S.1
Bullock, P.2
Raj, S.3
Wang, S.4
Yang, Y.5
-
38
-
-
76749143781
-
Food Security: The challenge of feeding 9 billion people
-
Muir, J.F., J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food Security: The challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383
-
(2010)
Science
, vol.327
, pp. 812-818
-
-
Muir, J.F.1
Pretty, J.2
Robinson, S.3
Thomas, S.M.4
Toulmin, C.5
-
41
-
-
37249082900
-
Computing heritability and selection response from unbalanced plant breeding trials
-
Piepho, H.-P., and J. Möhring. 2007. Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888. doi:10.1534/genetics.107.074229
-
(2007)
Genetics
, vol.177
, pp. 1881-1888
-
-
Piepho, H.-P.1
Möhring, J.2
-
42
-
-
84925016697
-
Breeding-assisted genomics
-
Poland, J. 2015. Breeding-assisted genomics. Curr. Opin. Plant Biol. 24:119–124. doi:10.1016/j.pbi.2015.02.009
-
(2015)
Curr. Opin. Plant Biol.
, vol.24
, pp. 119-124
-
-
Poland, J.1
-
43
-
-
31044453033
-
Crop yield estimation model for Iowa using remote sensing and surface parameters
-
Prasad, A.K., L. Chai, R.P. Singh, and M. Kafatos. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 8:26–33. doi:10.1016/j.jag.2005.06.002
-
(2006)
Int. J. Appl. Earth Obs. Geoinf.
, vol.8
, pp. 26-33
-
-
Prasad, A.K.1
Chai, L.2
Singh, R.P.3
Kafatos, M.4
-
44
-
-
85046299009
-
QGIS Geographic Information System
-
14 Dec. 2016
-
QGIS Development Team. 2015. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://www.qgis.org/(accessed 14 Dec. 2016).
-
(2015)
Open Source Geospatial Foundation Project
-
-
-
45
-
-
0035141024
-
In-season prediction of potential grain yield in winter wheat using canopy reflectance
-
Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, E.V. Lukina, W.E. Thomason, and J.S. Schepers. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93:131–138. doi:10.2134/agronj2001.931131x
-
(2001)
Agron. J.
, vol.93
, pp. 131-138
-
-
Raun, W.R.1
Solie, J.B.2
Johnson, G.V.3
Stone, M.L.4
Lukina, E.V.5
Thomason, W.E.6
Schepers, J.S.7
-
46
-
-
84879248721
-
Yield trends are insufficient to double global crop production by 2050
-
Ray, D.K., N.D. Mueller, P.C. West, and J.A. Foley. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428. doi:10.1371/journal.pone.0066428
-
(2013)
Plos One
, vol.8
-
-
Ray, D.K.1
Mueller, N.D.2
West, P.C.3
Foley, J.A.4
-
47
-
-
84865865111
-
Achieving yield gains in wheat
-
Reynolds, M., J. Foulkes, R. Furbank, S. Griffiths, J. King, E. Murchie et al. 2012. Achieving yield gains in wheat. Plant Cell Environ. 35:1799–1823. doi:10.1111/j.1365-3040.2012.02588.x
-
(2012)
Plant Cell Environ
, vol.35
, pp. 1799-1823
-
-
Reynolds, M.1
Foulkes, J.2
Furbank, R.3
Griffiths, S.4
King, J.5
Murchie, E.6
-
49
-
-
73149097227
-
Phenotyping approaches for physiological breeding and gene discovery in wheat
-
Reynolds, M., Y. Manes, A. Izanloo, and P. Langridge. 2009. Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 155:309–320. doi:10.1111/j.1744-7348.2009.00351.x
-
(2009)
Ann. Appl. Biol.
, vol.155
, pp. 309-320
-
-
Reynolds, M.1
Manes, Y.2
Izanloo, A.3
Langridge, P.4
-
50
-
-
84966339697
-
Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley
-
Rischbeck, P., S. Elsayed, B. Mistele, G. Barmeier, and K. Heil. 2016. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 78:44–59. doi:10.1016/j. eja.2016.04.013
-
(2016)
Eur. J. Agron.
, vol.78
, pp. 44-59
-
-
Rischbeck, P.1
Elsayed, S.2
Mistele, B.3
Barmeier, G.4
Heil, K.5
-
51
-
-
84856284111
-
Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera
-
Rosnell, T., and E. Honkavaara. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors (Basel Switzerland) 12:453–480. doi:10.3390/s120100453
-
(2012)
Sensors (Basel Switzerland)
, vol.12
, pp. 453-480
-
-
Rosnell, T.1
Honkavaara, E.2
-
52
-
-
84994235616
-
Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes
-
Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L.G. Párez, J. Crossa et al. 2016a. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes, Genet. 6:2799–2808. doi:10.1534/g3.116.032888
-
(2016)
Genet
, vol.6
, pp. 2799-2808
-
-
Rutkoski, J.1
Poland, J.2
Mondal, S.3
Autrique, E.4
Párez, L.G.5
Crossa, J.6
-
53
-
-
85029598641
-
Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat
-
Mexico, DF
-
Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L. Gonzalez Perez, J. Crossa et al. 2016b. Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. CIMMYT, Mexico, DF.
-
(2016)
CIMMYT
-
-
Rutkoski, J.1
Poland, J.2
Mondal, S.3
Autrique, E.4
Gonzalez Perez, L.5
Crossa, J.6
-
54
-
-
34548321865
-
Use of remote sensing data for estimation of winter wheat yield in the United States
-
Salazar, L., F. Kogan, and L. Roytman. 2007. Use of remote sensing data for estimation of winter wheat yield in the United States. Int. J. Remote Sens. 28:3795–3811. doi:10.1080/01431160601050395
-
(2007)
Int. J. Remote Sens.
, vol.28
, pp. 3795-3811
-
-
Salazar, L.1
Kogan, F.2
Roytman, L.3
-
55
-
-
84869742791
-
Relationship of wheat grain yield with spectral indices
-
Singh, S.P., O.P. Bishnoi, R. Niwas, and M. Singh. 2001. Relationship of wheat grain yield with spectral indices. J. Indian Soc. Remote Sensing 29:93–96. doi:10.1007/BF02989919
-
(2001)
J. Indian Soc. Remote Sensing
, vol.29
, pp. 93-96
-
-
Singh, S.P.1
Bishnoi, O.P.2
Niwas, R.3
Singh, M.4
-
56
-
-
0032732676
-
The use of the empirical line method to calibrate remotely sensed data to reflectance
-
Smith, G.M., and E.J. Milton. 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sensing 20:2653–2662. doi:10.1080/014311699211994
-
(1999)
Int. J. Remote Sensing
, vol.20
, pp. 2653-2662
-
-
Smith, G.M.1
Milton, E.J.2
-
57
-
-
84904129643
-
Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan
-
Sultana, S.R., A. Ali, A. Ahmad, M. Mubeen, S. Ahmad, S. Ercisli, and H.Z.E. Jaafar. 2014. Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. Sci. World J. 2014:725326. doi:10.1155/2014/725326
-
(2014)
Sci. World J.
, vol.2014
-
-
Sultana, S.R.1
Ali, A.2
Ahmad, A.3
Mubeen, M.4
Ahmad, S.5
Ercisli, S.6
Jaafar, H.Z.E.7
-
58
-
-
33751109257
-
In-season prediction of corn grain yield potential using normalized difference vegetation index
-
Teal, R.K., B. Tubana, K. Girma, K.W. Freeman, D.B. Arnall, O. Walsh, and W.R. Raun. 2006. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 98:1488–1494. doi:10.2134/agronj2006.0103
-
(2006)
Agron. J.
, vol.98
, pp. 1488-1494
-
-
Teal, R.K.1
Tubana, B.2
Girma, K.3
Freeman, K.W.4
Arnall, D.B.5
Walsh, O.6
Raun, W.R.7
-
59
-
-
76749109506
-
Breeding technologies to increase crop production in a changing world
-
Tester, M., and P. Langridge. 2010. Breeding technologies to increase crop production in a changing world. Science 327:818–822. doi:10.1126/science.1183700
-
(2010)
Science
, vol.327
, pp. 818-822
-
-
Tester, M.1
Langridge, P.2
-
60
-
-
0000565591
-
A computer movie simulating urban growth in the Detroit region
-
Tobler, A.W.R. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46:234–240. doi:10.2307/143141
-
(1970)
Econ. Geogr.
, vol.46
, pp. 234-240
-
-
Tobler, A.W.R.1
-
61
-
-
79955634316
-
-
Off. Chief Econ., USDA, accessed 14 Dec. 2016
-
USDA. 2016. World agricultural supply and demand estimates. Off. Chief Econ., USDA. http://www.usda.gov/oce/com-modity/wasde/latest.pdf (accessed 14 Dec. 2016).
-
(2016)
World Agricultural Supply and Demand Estimates
-
-
-
62
-
-
84870590278
-
Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter
-
Wang, K., C. Zhang, and W. Li. 2012. Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter. GIsci. Remote Sens. 49:915–932. doi:10.2747/1548-1603.49.6.915
-
(2012)
Gisci. Remote Sens.
, vol.49
, pp. 915-932
-
-
Wang, K.1
Zhang, C.2
Li, W.3
-
63
-
-
84903732542
-
Predicting grain yield and protein content in wheat by fusing multi- sensor and multi-temporal remote-sensing images
-
Wang, L., Y. Tian, X. Yao, Y. Zhu, and W. Cao. 2014. Predicting grain yield and protein content in wheat by fusing multi- sensor and multi-temporal remote-sensing images. Fields Crops Res. 164:178–188. doi:10.1016/j.fcr.2014.05.001
-
(2014)
Fields Crops Res
, vol.164
, pp. 178-188
-
-
Wang, L.1
Tian, Y.2
Yao, X.3
Zhu, Y.4
Cao, W.5
-
64
-
-
84860329380
-
Field-based phenomics for plant genetics research
-
White, J., P. Andrade-Sanchez, M.A. Gore, K.F. Bronson, T.A. Coffelt, M.M. Conley et al. 2012. Field-based phenomics for plant genetics research. Field Crops Res. 133:101–112. doi:10.1016/j.fcr.2012.04.003
-
(2012)
Field Crops Res
, vol.133
, pp. 101-112
-
-
White, J.1
Andrade-Sanchez, P.2
Gore, M.A.3
Bronson, K.F.4
Coffelt, T.A.5
Conley, M.M.6
-
65
-
-
84881482288
-
Remote sensing based detection of crop phenology for agricultural zones in china using a new threshold method
-
You, X., J. Meng, M. Zhang, and T. Dong. 2013. Remote sensing based detection of crop phenology for agricultural zones in china using a new threshold method. Remote Sens. 5:3190– 3211. doi:10.3390/rs5073190
-
(2013)
Remote Sens
, vol.5
, pp. 3190-3211
-
-
You, X.1
Meng, J.2
Zhang, M.3
Dong, T.4
-
66
-
-
84981809484
-
A decimal code for the growth stages of cereals
-
Zadoks, J.C., T.T. Chang, and C.F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415–421. doi:10.1111/j.1365-3180.1974.tb01084.x
-
(1974)
Weed Res
, vol.14
, pp. 415-421
-
-
Zadoks, J.C.1
Chang, T.T.2
Konzak, C.F.3
|