메뉴 건너뛰기




Volumn 57, Issue 5, 2017, Pages 2478-2489

Application of geographically weighted regression to improve grain yield prediction from unmanned aerial system imagery

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85029591076     PISSN: 0011183X     EISSN: 14350653     Source Type: Journal    
DOI: 10.2135/cropsci2016.12.1016     Document Type: Article
Times cited : (27)

References (66)
  • 1
    • 84979284605 scopus 로고    scopus 로고
    • version 1.2. Agisoft, St. Petersburg, Russia, 14 Dec. 2016
    • Agisoft. 2016. Agisoft PhotoScan user manual: Professional edition, version 1.2. Agisoft, St. Petersburg, Russia. http://www.agisoft. com/pdf/photoscan-pro_1_2_en.pdf(accessed 14 Dec. 2016).
    • (2016) Agisoft Photoscan User Manual: Professional Edition
  • 2
    • 85018988028 scopus 로고    scopus 로고
    • Crop phenology based on MODIS satellite imagery as an indicator of plant available water content
    • Adelaide, Australia. 1–6 Dec. 2013. The Modelling and Simulation Society of Australia and New Zealand
    • Araya, S., B. Ostendorf, G. Lyle, and M. Lewis. 2013. Crop phenology based on MODIS satellite imagery as an indicator of plant available water content. In: Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia. 1–6 Dec. 2013. The Modelling and Simulation Society of Australia and New Zealand. p. 1896–1902.
    • (2013) Proceedings of the 20Th International Congress on Modelling and Simulation , pp. 1896-1902
    • Araya, S.1    Ostendorf, B.2    Lyle, G.3    Lewis, M.4
  • 4
    • 33644970528 scopus 로고    scopus 로고
    • Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation
    • Babar, M.A., M.P. Reynolds, M. Van Ginkel, A.R. Klatt, W.R. Raun, and M.L. Stone. 2006a. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 46:578–588. doi:10.2135/cropsci2005.0059
    • (2006) Crop Sci , vol.46 , pp. 578-588
    • Babar, M.A.1    Reynolds, M.P.2    Van Ginkel, M.3    Klatt, A.R.4    Raun, W.R.5    Stone, M.L.6
  • 5
    • 33748664197 scopus 로고    scopus 로고
    • The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation
    • Babar, M.A., M. van Ginkel, R. Klatt, B. Prasad, and M.P. Reynolds. 2006b. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 150:155–172. doi:10.1007/s10681-006-9104-9
    • (2006) Euphytica , vol.150 , pp. 155-172
    • Babar, M.A.1    Van Ginkel, M.2    Klatt, R.3    Prasad, B.4    Reynolds, M.P.5
  • 7
    • 0344580385 scopus 로고
    • Guide to plant and crop sampling: Measurements and observations for agronomic and physiological research in small grain cereals
    • CIMMYT, Mexico, DF
    • Bell, M.A., E. Stations, R.A. Fischer, and W. Program. 1994. Guide to plant and crop sampling: Measurements and observations for agronomic and physiological research in small grain cereals. Wheat Spec. Rep. 32. CIMMYT, Mexico, DF.
    • (1994) Wheat Spec. Rep , pp. 32
    • Bell, M.A.1    Stations, E.2    Fischer, R.A.3    Program, W.4
  • 8
    • 0030443181 scopus 로고    scopus 로고
    • CIMMYT’s approach to breeding for wide adaptation
    • Braun, H.J., S. Rajaram, and M. Ginkel. 1996. CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175– 183. doi:10.1007/BF00022843
    • (1996) Euphytica , vol.92 , pp. 175-183
    • Braun, H.J.1    Rajaram, S.2    Ginkel, M.3
  • 9
    • 6144231228 scopus 로고    scopus 로고
    • Geographically weighted regression: A method for exploring spatial nonstationary
    • Brunsdon, C., A.S. Fotheringham, and M.E. Charlton. 1996. Geographically weighted regression: A method for exploring spatial nonstationary. Geogr. Anal. 28:281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
    • (1996) Geogr. Anal. , vol.28 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 10
    • 84875426911 scopus 로고    scopus 로고
    • Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement
    • Cobb, J.N., G. DeClerck, A. Greenberg, R. Clark, and S. McCouch. 2013. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126:867–887. doi:10.1007/s00122-013-2066-0
    • (2013) Theor. Appl. Genet. , vol.126 , pp. 867-887
    • Cobb, J.N.1    Declerck, G.2    Greenberg, A.3    Clark, R.4    McCouch, S.5
  • 11
    • 85014703620 scopus 로고    scopus 로고
    • Utilizing high-throughput phenotypic data for improved phenotypic selection of stress adaptive traits in wheat
    • Crain, J.L., M.P. Reynolds, and J.A. Poland. 2016. Utilizing high-throughput phenotypic data for improved phenotypic selection of stress adaptive traits in wheat. Crop Sci. 57:648–659. doi:10.2135/cropsci2016.02.0135
    • (2016) Crop Sci. , vol.57 , pp. 648-659
    • Crain, J.L.1    Reynolds, M.P.2    Poland, J.A.3
  • 12
    • 84908509157 scopus 로고    scopus 로고
    • Proximal remote sensing buggies and potential applications for field-based phenotyping
    • Deery, D., J. Jimenez-Berni, H. Jones, X. Sirault, and R. Furbank. 2014. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379. doi:10.3390/agronomy4030349
    • (2014) Agronomy , vol.4 , pp. 349-379
    • Deery, D.1    Jimenez-Berni, J.2    Jones, H.3    Sirault, X.4    Furbank, R.5
  • 17
    • 84928733872 scopus 로고    scopus 로고
    • Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier: A case of Yuyao, China
    • Feng, Q., J. Liu, and J. Gong. 2015. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier: A case of Yuyao, China. Water 7:1437–1455. doi:10.3390/w7041437
    • (2015) Water , vol.7 , pp. 1437-1455
    • Feng, Q.1    Liu, J.2    Gong, J.3
  • 20
    • 0000356520 scopus 로고    scopus 로고
    • Accounting for natural and extraneous variation in the analysis of field experiments
    • Gilmour, A.R., B.R. Cullis, and A.P. Verbyla. 1997. Accounting for natural and extraneous variation in the analysis of field experiments. J. Agric. Biol. Environ. Stat. 2:269–273. doi:10.2307/1400446
    • (1997) J. Agric. Biol. Environ. Stat. , vol.2 , pp. 269-273
    • Gilmour, A.R.1    Cullis, B.R.2    Verbyla, A.P.3
  • 21
    • 84941422340 scopus 로고    scopus 로고
    • Applying high-throughput phenotyping to plant–insect interactions: Picturing more resistant crops
    • Goggin, F.L., A. Lorence, and C.N. Topp. 2015. Applying high-throughput phenotyping to plant–insect interactions: Picturing more resistant crops. Curr. Opin. Insect Sci. 9:69–76. doi:10.1016/j.cois.2015.03.002
    • (2015) Curr. Opin. Insect Sci. , vol.9 , pp. 69-76
    • Goggin, F.L.1    Lorence, A.2    Topp, C.N.3
  • 24
    • 84975755388 scopus 로고    scopus 로고
    • Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries
    • Haghighattalab, A., L. González Pérez, S. Mondal, D. Singh, D. Schinstock, J. Rutkoski et al. 2016. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:35. doi:10.1186/s13007-016-0134-6
    • (2016) Plant Methods , vol.12 , pp. 35
    • Haghighattalab, A.1    González Pérez, L.2    Mondal, S.3    Singh, D.4    Schinstock, D.5    Rutkoski, J.6
  • 25
    • 0037734547 scopus 로고    scopus 로고
    • Estimating and interpreting heritability for plant breeding: An update
    • Holland, J., W. Nyquist, and C. Cervantes-Martinez. 2003. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 22:9–112. doi:10.1002/9780470650202.ch2
    • (2003) Plant Breed. Rev. , vol.22 , pp. 9-112
    • Holland, J.1    Nyquist, W.2    Cervantes-Martinez, C.3
  • 26
    • 84870717321 scopus 로고    scopus 로고
    • Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle
    • Hruska, R., J. Mitchell, M. Anderson, and N.F. Glenn. 2012. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens. 4:2736–2752. doi:10.3390/rs4092736
    • (2012) Remote Sens , vol.4 , pp. 2736-2752
    • Hruska, R.1    Mitchell, J.2    Anderson, M.3    Glenn, N.F.4
  • 27
    • 34249821654 scopus 로고    scopus 로고
    • Incorporating spatial non-sta-tionarity of regression coefficients into predictive vegetation models
    • Kupfer, J.A., and C.A. Farris. 2007. Incorporating spatial non-sta-tionarity of regression coefficients into predictive vegetation models. Landscape Ecol. 22:837–852. doi:10.1007/s10980-006-9058-2
    • (2007) Landscape Ecol , vol.22 , pp. 837-852
    • Kupfer, J.A.1    Farris, C.A.2
  • 28
    • 84928266341 scopus 로고    scopus 로고
    • Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach
    • Liebisch, F., N. Kirchgessner, D. Schneider, A. Walter, and A. Hund. 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11:9. doi:10.1186/s13007-015-0048-8
    • (2015) Plant Methods , vol.11 , pp. 9
    • Liebisch, F.1    Kirchgessner, N.2    Schneider, D.3    Walter, A.4    Hund, A.5
  • 29
    • 84859974450 scopus 로고    scopus 로고
    • Stay-green in spring wheat can be determined by spectral reflectance measurements (Nor-malized difference vegetation index) independently from phenology
    • Lopes, M.S., and M.P. Reynolds. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (nor-malized difference vegetation index) independently from phenology. J. Exp. Bot. 63:3789–3798. doi:10.1093/jxb/ers071
    • (2012) J. Exp. Bot. , vol.63 , pp. 3789-3798
    • Lopes, M.S.1    Reynolds, M.P.2
  • 30
    • 84894273575 scopus 로고    scopus 로고
    • Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data
    • Lu, B., M. Charlton, P. Harris, and A. Stewart. 2014a. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 28:660–681. doi:10.1080/13658816.2013.865739
    • (2014) Int. J. Geogr. Inf. Sci. , vol.28 , pp. 660-681
    • Lu, B.1    Charlton, M.2    Harris, P.3    Stewart, A.4
  • 31
    • 84901651260 scopus 로고    scopus 로고
    • The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models
    • Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014b. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geospatial Inf. Sci. 17:85–101.
    • (2014) Geospatial Inf. Sci. , vol.17 , pp. 85-101
    • Lu, B.1    Harris, P.2    Charlton, M.3    Brunsdon, C.4
  • 32
    • 0036326469 scopus 로고    scopus 로고
    • Large area operational wheat yield model development and validation based on spectral and meteorological data
    • Manjunath, K.R., M.B. Potdar, and N.L. Purohit. 2002. Large area operational wheat yield model development and validation based on spectral and meteorological data. Int. J. Remote Sensing 23:3023–3038. doi:10.1080/01431160110104692
    • (2002) Int. J. Remote Sensing , vol.23 , pp. 3023-3038
    • Manjunath, K.R.1    Potdar, M.B.2    Purohit, N.L.3
  • 33
    • 33845758913 scopus 로고    scopus 로고
    • Mapping the results of geographically weighted regression
    • Mennis, J. 2006. Mapping the results of geographically weighted regression. Cartogr. J. 43:171–179. doi:10.1179/000870406X114658
    • (2006) Cartogr. J. , vol.43 , pp. 171-179
    • Mennis, J.1
  • 34
    • 33846829987 scopus 로고    scopus 로고
    • The pls package: Principal component and partial least squares regression in R
    • Mevik, B.H., and R. Wehrens. 2007. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 18:1–23. doi:10.18637/jss.v018.i02
    • (2007) J. Stat. Softw. , vol.18 , pp. 1-23
    • Mevik, B.H.1    Wehrens, R.2
  • 36
    • 85029599425 scopus 로고    scopus 로고
    • Spatial measurements and statistics. ESRI Press, Redlands, CA
    • Mitchell, A. 2005. The ESRI guide to GIS analysis. Vol. 2: Spatial measurements and statistics. ESRI Press, Redlands, CA.
    • (2005) The ESRI Guide to GIS Analysis , vol.2
    • Mitchell, A.1
  • 37
    • 78651435852 scopus 로고    scopus 로고
    • Crop yield forecasting on the Canadian prairies using MODIS NDVI data
    • Mkhabela, M.S., P. Bullock, S. Raj, S. Wang, and Y. Yang. 2011. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meteorol. 151:385–393. doi:10.1016/j. agrformet.2010.11.012
    • (2011) Agric. For. Meteorol. , vol.151 , pp. 385-393
    • Mkhabela, M.S.1    Bullock, P.2    Raj, S.3    Wang, S.4    Yang, Y.5
  • 38
    • 76749143781 scopus 로고    scopus 로고
    • Food Security: The challenge of feeding 9 billion people
    • Muir, J.F., J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food Security: The challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383
    • (2010) Science , vol.327 , pp. 812-818
    • Muir, J.F.1    Pretty, J.2    Robinson, S.3    Thomas, S.M.4    Toulmin, C.5
  • 41
    • 37249082900 scopus 로고    scopus 로고
    • Computing heritability and selection response from unbalanced plant breeding trials
    • Piepho, H.-P., and J. Möhring. 2007. Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888. doi:10.1534/genetics.107.074229
    • (2007) Genetics , vol.177 , pp. 1881-1888
    • Piepho, H.-P.1    Möhring, J.2
  • 42
    • 84925016697 scopus 로고    scopus 로고
    • Breeding-assisted genomics
    • Poland, J. 2015. Breeding-assisted genomics. Curr. Opin. Plant Biol. 24:119–124. doi:10.1016/j.pbi.2015.02.009
    • (2015) Curr. Opin. Plant Biol. , vol.24 , pp. 119-124
    • Poland, J.1
  • 43
    • 31044453033 scopus 로고    scopus 로고
    • Crop yield estimation model for Iowa using remote sensing and surface parameters
    • Prasad, A.K., L. Chai, R.P. Singh, and M. Kafatos. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 8:26–33. doi:10.1016/j.jag.2005.06.002
    • (2006) Int. J. Appl. Earth Obs. Geoinf. , vol.8 , pp. 26-33
    • Prasad, A.K.1    Chai, L.2    Singh, R.P.3    Kafatos, M.4
  • 44
    • 85046299009 scopus 로고    scopus 로고
    • QGIS Geographic Information System
    • 14 Dec. 2016
    • QGIS Development Team. 2015. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://www.qgis.org/(accessed 14 Dec. 2016).
    • (2015) Open Source Geospatial Foundation Project
  • 45
    • 0035141024 scopus 로고    scopus 로고
    • In-season prediction of potential grain yield in winter wheat using canopy reflectance
    • Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, E.V. Lukina, W.E. Thomason, and J.S. Schepers. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93:131–138. doi:10.2134/agronj2001.931131x
    • (2001) Agron. J. , vol.93 , pp. 131-138
    • Raun, W.R.1    Solie, J.B.2    Johnson, G.V.3    Stone, M.L.4    Lukina, E.V.5    Thomason, W.E.6    Schepers, J.S.7
  • 46
    • 84879248721 scopus 로고    scopus 로고
    • Yield trends are insufficient to double global crop production by 2050
    • Ray, D.K., N.D. Mueller, P.C. West, and J.A. Foley. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428. doi:10.1371/journal.pone.0066428
    • (2013) Plos One , vol.8
    • Ray, D.K.1    Mueller, N.D.2    West, P.C.3    Foley, J.A.4
  • 48
    • 84964825652 scopus 로고    scopus 로고
    • Physiological breeding
    • Reynolds, M., and P. Langridge. 2016. Physiological breeding. Curr. Opin. Plant Biol. 31:162–171. doi:10.1016/j. pbi.2016.04.005
    • (2016) Curr. Opin. Plant Biol. , vol.31 , pp. 162-171
    • Reynolds, M.1    Langridge, P.2
  • 49
    • 73149097227 scopus 로고    scopus 로고
    • Phenotyping approaches for physiological breeding and gene discovery in wheat
    • Reynolds, M., Y. Manes, A. Izanloo, and P. Langridge. 2009. Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 155:309–320. doi:10.1111/j.1744-7348.2009.00351.x
    • (2009) Ann. Appl. Biol. , vol.155 , pp. 309-320
    • Reynolds, M.1    Manes, Y.2    Izanloo, A.3    Langridge, P.4
  • 50
    • 84966339697 scopus 로고    scopus 로고
    • Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley
    • Rischbeck, P., S. Elsayed, B. Mistele, G. Barmeier, and K. Heil. 2016. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 78:44–59. doi:10.1016/j. eja.2016.04.013
    • (2016) Eur. J. Agron. , vol.78 , pp. 44-59
    • Rischbeck, P.1    Elsayed, S.2    Mistele, B.3    Barmeier, G.4    Heil, K.5
  • 51
    • 84856284111 scopus 로고    scopus 로고
    • Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera
    • Rosnell, T., and E. Honkavaara. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors (Basel Switzerland) 12:453–480. doi:10.3390/s120100453
    • (2012) Sensors (Basel Switzerland) , vol.12 , pp. 453-480
    • Rosnell, T.1    Honkavaara, E.2
  • 52
    • 84994235616 scopus 로고    scopus 로고
    • Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes
    • Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L.G. Párez, J. Crossa et al. 2016a. Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes, Genet. 6:2799–2808. doi:10.1534/g3.116.032888
    • (2016) Genet , vol.6 , pp. 2799-2808
    • Rutkoski, J.1    Poland, J.2    Mondal, S.3    Autrique, E.4    Párez, L.G.5    Crossa, J.6
  • 53
    • 85029598641 scopus 로고    scopus 로고
    • Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat
    • Mexico, DF
    • Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L. Gonzalez Perez, J. Crossa et al. 2016b. Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. CIMMYT, Mexico, DF.
    • (2016) CIMMYT
    • Rutkoski, J.1    Poland, J.2    Mondal, S.3    Autrique, E.4    Gonzalez Perez, L.5    Crossa, J.6
  • 54
    • 34548321865 scopus 로고    scopus 로고
    • Use of remote sensing data for estimation of winter wheat yield in the United States
    • Salazar, L., F. Kogan, and L. Roytman. 2007. Use of remote sensing data for estimation of winter wheat yield in the United States. Int. J. Remote Sens. 28:3795–3811. doi:10.1080/01431160601050395
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 3795-3811
    • Salazar, L.1    Kogan, F.2    Roytman, L.3
  • 56
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, G.M., and E.J. Milton. 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sensing 20:2653–2662. doi:10.1080/014311699211994
    • (1999) Int. J. Remote Sensing , vol.20 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 57
    • 84904129643 scopus 로고    scopus 로고
    • Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan
    • Sultana, S.R., A. Ali, A. Ahmad, M. Mubeen, S. Ahmad, S. Ercisli, and H.Z.E. Jaafar. 2014. Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. Sci. World J. 2014:725326. doi:10.1155/2014/725326
    • (2014) Sci. World J. , vol.2014
    • Sultana, S.R.1    Ali, A.2    Ahmad, A.3    Mubeen, M.4    Ahmad, S.5    Ercisli, S.6    Jaafar, H.Z.E.7
  • 58
    • 33751109257 scopus 로고    scopus 로고
    • In-season prediction of corn grain yield potential using normalized difference vegetation index
    • Teal, R.K., B. Tubana, K. Girma, K.W. Freeman, D.B. Arnall, O. Walsh, and W.R. Raun. 2006. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 98:1488–1494. doi:10.2134/agronj2006.0103
    • (2006) Agron. J. , vol.98 , pp. 1488-1494
    • Teal, R.K.1    Tubana, B.2    Girma, K.3    Freeman, K.W.4    Arnall, D.B.5    Walsh, O.6    Raun, W.R.7
  • 59
    • 76749109506 scopus 로고    scopus 로고
    • Breeding technologies to increase crop production in a changing world
    • Tester, M., and P. Langridge. 2010. Breeding technologies to increase crop production in a changing world. Science 327:818–822. doi:10.1126/science.1183700
    • (2010) Science , vol.327 , pp. 818-822
    • Tester, M.1    Langridge, P.2
  • 60
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler, A.W.R. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46:234–240. doi:10.2307/143141
    • (1970) Econ. Geogr. , vol.46 , pp. 234-240
    • Tobler, A.W.R.1
  • 61
    • 79955634316 scopus 로고    scopus 로고
    • Off. Chief Econ., USDA, accessed 14 Dec. 2016
    • USDA. 2016. World agricultural supply and demand estimates. Off. Chief Econ., USDA. http://www.usda.gov/oce/com-modity/wasde/latest.pdf (accessed 14 Dec. 2016).
    • (2016) World Agricultural Supply and Demand Estimates
  • 62
    • 84870590278 scopus 로고    scopus 로고
    • Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter
    • Wang, K., C. Zhang, and W. Li. 2012. Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter. GIsci. Remote Sens. 49:915–932. doi:10.2747/1548-1603.49.6.915
    • (2012) Gisci. Remote Sens. , vol.49 , pp. 915-932
    • Wang, K.1    Zhang, C.2    Li, W.3
  • 63
    • 84903732542 scopus 로고    scopus 로고
    • Predicting grain yield and protein content in wheat by fusing multi- sensor and multi-temporal remote-sensing images
    • Wang, L., Y. Tian, X. Yao, Y. Zhu, and W. Cao. 2014. Predicting grain yield and protein content in wheat by fusing multi- sensor and multi-temporal remote-sensing images. Fields Crops Res. 164:178–188. doi:10.1016/j.fcr.2014.05.001
    • (2014) Fields Crops Res , vol.164 , pp. 178-188
    • Wang, L.1    Tian, Y.2    Yao, X.3    Zhu, Y.4    Cao, W.5
  • 65
    • 84881482288 scopus 로고    scopus 로고
    • Remote sensing based detection of crop phenology for agricultural zones in china using a new threshold method
    • You, X., J. Meng, M. Zhang, and T. Dong. 2013. Remote sensing based detection of crop phenology for agricultural zones in china using a new threshold method. Remote Sens. 5:3190– 3211. doi:10.3390/rs5073190
    • (2013) Remote Sens , vol.5 , pp. 3190-3211
    • You, X.1    Meng, J.2    Zhang, M.3    Dong, T.4
  • 66
    • 84981809484 scopus 로고
    • A decimal code for the growth stages of cereals
    • Zadoks, J.C., T.T. Chang, and C.F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415–421. doi:10.1111/j.1365-3180.1974.tb01084.x
    • (1974) Weed Res , vol.14 , pp. 415-421
    • Zadoks, J.C.1    Chang, T.T.2    Konzak, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.