메뉴 건너뛰기




Volumn 8, Issue 4, 2017, Pages

Type III interferon-mediated signaling is critical for controlling live attenuated yellow fever virus infection in vivo

Author keywords

Flavivirus; Innate immunity; Interferons; Live vector vaccines; Yellow fever virus

Indexed keywords

ALPHA INTERFERON; ALPHA INTERFERON RECEPTOR; BETA INTERFERON; BETA INTERFERON RECEPTOR; INTERFERON; INTERFERON RECEPTOR; INTERFERON RECEPTOR LAMBDA; INTERFERON TYPE III; UNCLASSIFIED DRUG; CYTOKINE; INTERFERON RECEPTOR, TYPE II; LIVE VACCINE; YELLOW FEVER VACCINE;

EID: 85029171391     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00819-17     Document Type: Article
Times cited : (50)

References (56)
  • 1
    • 85029153880 scopus 로고    scopus 로고
    • A new look at an old disease: Recent insights into the global epidemiology of dengue
    • Sharp TM, Tomashek KM, Read JS, Margolis HS, Waterman SH. 2017. A new look at an old disease: recent insights into the global epidemiology of dengue. Curr Epidemiol Rep 4:11–21. https://doi.org/10.1007/s40471-017-0095-y.
    • (2017) Curr Epidemiol Rep , vol.4 , pp. 11-21
    • Sharp, T.M.1    Tomashek, K.M.2    Read, J.S.3    Margolis, H.S.4    Waterman, S.H.5
  • 3
    • 84982835392 scopus 로고    scopus 로고
    • Zika virus infection: Epidemiology, clinical manifestations and diagnosis
    • Calvet GA, Santos FB, Sequeira PC. 2016. Zika virus infection: epidemiology, clinical manifestations and diagnosis. Curr Opin Infect Dis 29: 459–466. https://doi.org/10.1097/QCO.0000000000000301.
    • (2016) Curr Opin Infect Dis , vol.29 , pp. 459-466
    • Calvet, G.A.1    Santos, F.B.2    Sequeira, P.C.3
  • 4
    • 84890365600 scopus 로고    scopus 로고
    • 17D yellow fever virus vaccine
    • Monath TP. 2013. 17D yellow fever virus vaccine. Am J Trop Med Hyg 89:1225. https://doi.org/10.4269/ajtmh.13-0443a.
    • (2013) Am J Trop Med Hyg , vol.89 , pp. 1225
    • Monath, T.P.1
  • 5
    • 84971610964 scopus 로고    scopus 로고
    • Why is the yellow fever outbreak in Angola a “threat to the entire world”?
    • Woodall JP, Yuill TM. 2016. Why is the yellow fever outbreak in Angola a “threat to the entire world”? Int J Infect Dis 48:96–97. https://doi.org/10.1016/j.ijid.2016.05.001.
    • (2016) Int J Infect Dis , vol.48 , pp. 96-97
    • Woodall, J.P.1    Yuill, T.M.2
  • 6
    • 0005211065 scopus 로고
    • Comparison of the virulent Asibi strain of yellow-fever virus with the 17d vaccine strain derived from it
    • Hahn CS, Dalrymple JM, Strauss JH, Rice CM. 1987. Comparison of the virulent Asibi strain of yellow-fever virus with the 17d vaccine strain derived from it. Proc Natl Acad Sci U S A 84:2019–2023. https://doi.org/10.1073/pnas.84.7.2019.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 2019-2023
    • Hahn, C.S.1    Dalrymple, J.M.2    Strauss, J.H.3    Rice, C.M.4
  • 7
    • 84937611357 scopus 로고    scopus 로고
    • Spectrum of disease outcomes in mice infected with YFV-17D
    • Erickson AK, Pfeiffer JK. 2015. Spectrum of disease outcomes in mice infected with YFV-17D. J Gen Virol 96:1328–1339. https://doi.org/10.1099/vir.0.000075.
    • (2015) J Gen Virol , vol.96 , pp. 1328-1339
    • Erickson, A.K.1    Pfeiffer, J.K.2
  • 8
    • 84963811848 scopus 로고    scopus 로고
    • Animal models of yellow fever and their application in clinical research
    • Julander JG. 2016. Animal models of yellow fever and their application in clinical research. Curr Opin Virol 18:64–69. https://doi.org/10.1016/j.coviro.2016.03.010.
    • (2016) Curr Opin Virol , vol.18 , pp. 64-69
    • Julander, J.G.1
  • 9
    • 18844457095 scopus 로고    scopus 로고
    • Mechanisms of type-I- and type-II-interferonmediated signalling
    • Platanias LC. 2005. Mechanisms of type-I- and type-II-interferonmediated signalling. Nat Rev Immunol 5:375–386. https://doi.org/10.1038/nri1604.
    • (2005) Nat Rev Immunol , vol.5 , pp. 375-386
    • Platanias, L.C.1
  • 11
    • 0029414784 scopus 로고
    • Immune defence in mice lacking type I and/or type II interferon receptors
    • van den Broek MF, Müller U, Huang S, Zinkernagel RM, Aguet M. 1995. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 148:5-18. https://doi.org/10.1111/j.1600-065X.1995.tb00090.x.
    • (1995) Immunol Rev , vol.148 , pp. 5-18
    • Van Den Broek, M.F.1    Müller, U.2    Huang, S.3    Zinkernagel, R.M.4    Aguet, M.5
  • 12
    • 73649112087 scopus 로고    scopus 로고
    • A mouse model for studying viscerotropic disease caused by yellow fever virus infection
    • Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD. 2009. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog 5:e1000614. https://doi.org/10.1371/journal.ppat.1000614.
    • (2009) Plos Pathog , vol.5
    • Meier, K.C.1    Gardner, C.L.2    Khoretonenko, M.V.3    Klimstra, W.B.4    Ryman, K.D.5
  • 13
    • 84859484165 scopus 로고    scopus 로고
    • A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain
    • Thibodeaux BA, Garbino NC, Liss NM, Piper J, Blair CD, Roehrig JT. 2012. A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain. Vaccine 30:3180–3187. https://doi.org/10.1016/j.vaccine.2012.03.003.
    • (2012) Vaccine , vol.30 , pp. 3180-3187
    • Thibodeaux, B.A.1    Garbino, N.C.2    Liss, N.M.3    Piper, J.4    Blair, C.D.5    Roehrig, J.T.6
  • 16
    • 84982980835 scopus 로고    scopus 로고
    • The 17D-204 vaccine strain-induced protection against virulent yellow fever virus is mediated by humoral immunity and CD4+ but not CD8+ T Cells
    • Watson AM, Lam LK, Klimstra WB, Ryman KD. 2016. The 17D-204 vaccine strain-induced protection against virulent yellow fever virus is mediated by humoral immunity and CD4+ but not CD8+ T Cells. PLoS Pathog 12:e1005786. https://doi.org/10.1371/journal.ppat.1005786.
    • (2016) Plos Pathog , vol.12
    • Watson, A.M.1    Lam, L.K.2    Klimstra, W.B.3    Ryman, K.D.4
  • 17
    • 18844457330 scopus 로고    scopus 로고
    • The role of interferongamma on immune and allergic responses
    • Teixeira LK, Fonseca BP, Barboza BA, Viola JP. 2005. The role of interferongamma on immune and allergic responses. Mem Inst Oswaldo Cruz 100(Suppl 1):137–144. https://doi.org/10.1590/S0074-02762005000900024.
    • (2005) Mem Inst Oswaldo Cruz , vol.100 , pp. 137-144
    • Teixeira, L.K.1    Fonseca, B.P.2    Barboza, B.A.3    Viola, J.P.4
  • 19
    • 84937779845 scopus 로고    scopus 로고
    • Guarding the frontiers: The biology of type III interferons
    • Wack A, Terczyńska-Dyla E, Hartmann R. 2015. Guarding the frontiers: the biology of type III interferons. Nat Immunol 16:802–809. https://doi.org/10.1038/ni.3212.
    • (2015) Nat Immunol , vol.16 , pp. 802-809
    • Wack, A.1    Terczyńska-Dyla, E.2    Hartmann, R.3
  • 20
    • 84937722616 scopus 로고    scopus 로고
    • Interferon-lambda: Immune functions at barrier surfaces and beyond
    • Lazear HM, Nice TJ, Diamond MS. 2015. Interferon-lambda: immune functions at barrier surfaces and beyond. Immunity 43:15–28. https://doi.org/10.1016/j.immuni.2015.07.001.
    • (2015) Immunity , vol.43 , pp. 15-28
    • Lazear, H.M.1    Nice, T.J.2    Diamond, M.S.3
  • 21
    • 85018378564 scopus 로고    scopus 로고
    • Contribution of type III interferons to antiviral immunity: Location, location, location
    • Kotenko SV, Durbin JE. 2017. Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem 292: 7295–7303. https://doi.org/10.1074/jbc.R117.777102.
    • (2017) J Biol Chem , vol.292 , pp. 7295-7303
    • Kotenko, S.V.1    Durbin, J.E.2
  • 23
    • 85015216333 scopus 로고    scopus 로고
    • Single-cell tracking of flavivirus RNA uncovers species-specific interactions with the immune system dictating disease outcome
    • Douam F, Hrebikova G, Albrecht YE, Sellau J, Sharon Y, Ding Q, Ploss A. 2017. Single-cell tracking of flavivirus RNA uncovers species-specific interactions with the immune system dictating disease outcome. Nat Commun 8:14781. https://doi.org/10.1038/ncomms14781.
    • (2017) Nat Commun , vol.8 , pp. 14781
    • Douam, F.1    Hrebikova, G.2    Albrecht, Y.E.3    Sellau, J.4    Sharon, Y.5    Ding, Q.6    Ploss, A.7
  • 24
    • 0242289408 scopus 로고    scopus 로고
    • Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys
    • Marchevsky RS, Freire MS, Coutinho ES, Galler R. 2003. Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys. Virology 316:55–63. https://doi.org/10.1016/S0042-6822(03)00583-X.
    • (2003) Virology , vol.316 , pp. 55-63
    • Marchevsky, R.S.1    Freire, M.S.2    Coutinho, E.S.3    Galler, R.4
  • 25
    • 2442529815 scopus 로고    scopus 로고
    • Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX
    • Kitchener S. 2004. Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX. Vaccine 22: 2103–2105. https://doi.org/10.1016/j.vaccine.2004.01.026.
    • (2004) Vaccine , vol.22 , pp. 2103-2105
    • Kitchener, S.1
  • 27
    • 34249069580 scopus 로고    scopus 로고
    • West Nile virus encephalitis: Sequential histopathological and immunological events in a murine model of infection
    • Garcia-Tapia D, Hassett DE, Mitchell WJ, Jr., Johnson GC, Kleiboeker SB. 2007. West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13:130–138. https://doi.org/10.1080/13550280601187185.
    • (2007) J Neurovirol , vol.13 , pp. 130-138
    • Garcia-Tapia, D.1    Hassett, D.E.2    Mitchell, W.J.3    Johnson, G.C.4    Kleiboeker, S.B.5
  • 29
    • 84961875105 scopus 로고    scopus 로고
    • Viral neuronotropism is important in the pathogenesis of Murray Valley encephalitis
    • Fu TL, Ong KC, Tran YD, McLean CA, Wong KT. 2016. Viral neuronotropism is important in the pathogenesis of Murray Valley encephalitis. Neuropathol Appl Neurobiol 42:307–310. https://doi.org/10.1111/nan.12285.
    • (2016) Neuropathol Appl Neurobiol , vol.42 , pp. 307-310
    • Fu, T.L.1    Ong, K.C.2    Tran, Y.D.3    McLean, C.A.4    Wong, K.T.5
  • 30
    • 84908428514 scopus 로고    scopus 로고
    • Viral pathogen-associated molecular patterns regulate bloodbrain barrier integrity via competing innate cytokine signals
    • Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. 2014. Viral pathogen-associated molecular patterns regulate bloodbrain barrier integrity via competing innate cytokine signals. mBio 5:e01476-14. https://doi.org/10.1128/mBio.01476-14.
    • (2014) Mbio , vol.5 , pp. e01476-e01e14
    • Daniels, B.P.1    Holman, D.W.2    Cruz-Orengo, L.3    Jujjavarapu, H.4    Durrant, D.M.5    Klein, R.S.6
  • 31
    • 84970971273 scopus 로고    scopus 로고
    • West Nile virus infection in the central nervous system
    • 26 January
    • Winkelmann ER, Luo H, Wang T. 26 January 2016. West Nile virus infection in the central nervous system. F 1000 Res https://f1000research.com/articles/5-105/v1.
    • (2016) F 1000 Res
    • Winkelmann, E.R.1    Luo, H.2    Wang, T.3
  • 32
    • 84903779440 scopus 로고    scopus 로고
    • The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections
    • Egli A, Santer DM, O’Shea D, Tyrrell DL, Houghton M. 2014. The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 3:e51. https://doi.org/10.1038/emi.2014.51.
    • (2014) Emerg Microbes Infect , vol.3
    • Egli, A.1    Santer, D.M.2    O’Shea, D.3    Tyrrell, D.L.4    Houghton, M.5
  • 33
    • 84898619553 scopus 로고    scopus 로고
    • IFN-lambda exerts opposing effects on T cell responses depending on the chronicity of the virus infection
    • Misumi I, Whitmire JK. 2014. IFN-lambda exerts opposing effects on T cell responses depending on the chronicity of the virus infection. J Immunol 192:3596–3606. https://doi.org/10.4049/jimmunol.1301705.
    • (2014) J Immunol , vol.192 , pp. 3596-3606
    • Misumi, I.1    Whitmire, J.K.2
  • 34
    • 80054110065 scopus 로고    scopus 로고
    • Naive, effector and memory CD8 T-cell trafficking: Parallels and distinctions
    • Nolz JC, Starbeck-Miller GR, Harty JT. 2011. Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy 3:1223–1233. https://doi.org/10.2217/imt.11.100.
    • (2011) Immunotherapy , vol.3 , pp. 1223-1233
    • Nolz, J.C.1    Starbeck-Miller, G.R.2    Harty, J.T.3
  • 36
    • 0036284362 scopus 로고    scopus 로고
    • Qualitative differences between naive and memory T cells
    • Berard M, Tough DF. 2002. Qualitative differences between naive and memory T cells. Immunology 106:127–138. https://doi.org/10.1046/j.1365-2567.2002.01447.x.
    • (2002) Immunology , vol.106 , pp. 127-138
    • Berard, M.1    Tough, D.F.2
  • 37
    • 84861193543 scopus 로고    scopus 로고
    • IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis
    • Carrette F, Surh CD. 2012. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24:209–217. https://doi.org/10.1016/j.smim.2012.04.010.
    • (2012) Semin Immunol , vol.24 , pp. 209-217
    • Carrette, F.1    Surh, C.D.2
  • 38
    • 84888059493 scopus 로고    scopus 로고
    • The who’s who of T-cell differentiation: Human memory T-cell subsets
    • Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. 2013. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 43:2797–2809. https://doi.org/10.1002/eji.201343751.
    • (2013) Eur J Immunol , vol.43 , pp. 2797-2809
    • Mahnke, Y.D.1    Brodie, T.M.2    Sallusto, F.3    Roederer, M.4    Lugli, E.5
  • 39
    • 84874024903 scopus 로고    scopus 로고
    • Regulation of antigenexperienced T cells: Lessons from the quintessential memory marker CD44
    • Baaten BJG, Tinoco R, Chen AT, Bradley LM. 2012. Regulation of antigenexperienced T cells: lessons from the quintessential memory marker CD44. Front Immunol 3:23. https://doi.org/10.3389/fimmu.2012.00023.
    • (2012) Front Immunol , vol.3 , pp. 23
    • Baaten, B.1    Tinoco, R.2    Chen, A.T.3    Bradley, L.M.4
  • 40
    • 84897537829 scopus 로고    scopus 로고
    • Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection
    • Chai Q, He WQ, Zhou M, Lu H, Fu ZF. 2014. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 88:4698–4710. https://doi.org/10.1128/JVI.03149-13.
    • (2014) J Virol , vol.88 , pp. 4698-4710
    • Chai, Q.1    He, W.Q.2    Zhou, M.3    Lu, H.4    Fu, Z.F.5
  • 42
    • 84888241256 scopus 로고    scopus 로고
    • Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenzainfected airway epithelia
    • Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, Albert ML, Staeheli P, Wack A. 2013. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenzainfected airway epithelia. PLoS Pathog 9:e1003773. https://doi.org/10.1371/journal.ppat.1003773.
    • (2013) Plos Pathog , vol.9
    • Crotta, S.1    Davidson, S.2    Mahlakoiv, T.3    Desmet, C.J.4    Buckwalter, M.R.5    Albert, M.L.6    Staeheli, P.7    Wack, A.8
  • 43
    • 84869450003 scopus 로고    scopus 로고
    • Combined action of type I and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread
    • Mahlakõiv T, Ritz D, Mordstein M, DeDiego ML, Enjuanes L, Müller MA, Drosten C, Staeheli P. 2012. Combined action of type I and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread. J Gen Virol 93:2601–2605. https://doi.org/10.1099/vir.0.046284-0.
    • (2012) J Gen Virol , vol.93 , pp. 2601-2605
    • Mahlakõiv, T.1    Ritz, D.2    Mordstein, M.3    Dediego, M.L.4    Enjuanes, L.5    Müller, M.A.6    Drosten, C.7    Staeheli, P.8
  • 46
    • 84906938384 scopus 로고    scopus 로고
    • Interferon-lambda in the context of viral infections: Production, response and therapeutic implications
    • Hermant P, Michiels T. 2014. Interferon-lambda in the context of viral infections: production, response and therapeutic implications. J Innate Immun 6:563–574. https://doi.org/10.1159/000360084.
    • (2014) J Innate Immun , vol.6 , pp. 563-574
    • Hermant, P.1    Michiels, T.2
  • 48
    • 20444481707 scopus 로고    scopus 로고
    • Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process
    • Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. 2005. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19:923–933. https://doi.org/10.1096/fj.04-3260com.
    • (2005) FASEB J , vol.19 , pp. 923-933
    • Bruewer, M.1    Utech, M.2    Ivanov, A.I.3    Hopkins, A.M.4    Parkos, C.A.5    Nusrat, A.6
  • 49
    • 55449093555 scopus 로고    scopus 로고
    • Interferon-lambda1 (Interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro
    • Srinivas S, Dai J, Eskdale J, Gallagher GE, Megjugorac NJ, Gallagher G. 2008. Interferon-lambda1 (interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro. Immunology 125:492–502. https://doi.org/10.1111/j.1365-2567.2008.02862.x.
    • (2008) Immunology , vol.125 , pp. 492-502
    • Srinivas, S.1    Dai, J.2    Eskdale, J.3    Gallagher, G.E.4    Megjugorac, N.J.5    Gallagher, G.6
  • 50
    • 67651121930 scopus 로고    scopus 로고
    • IFNlambda1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells
    • Dai J, Megjugorac NJ, Gallagher GE, Yu RY, Gallagher G. 2009. IFNlambda1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells. Blood 113:5829–5838. https://doi.org/10.1182/blood-2008-09-179507.
    • (2009) Blood , vol.113 , pp. 5829-5838
    • Dai, J.1    Megjugorac, N.J.2    Gallagher, G.E.3    Yu, R.Y.4    Gallagher, G.5
  • 51
    • 84948807951 scopus 로고    scopus 로고
    • Genetic dissection of the host tropism of human-tropic pathogens
    • Douam F, Gaska JM, Winer BY, Ding Q, von Schaewen M, Ploss A. 2015. Genetic dissection of the host tropism of human-tropic pathogens. Annu Rev Genet 49:21–45. https://doi.org/10.1146/annurev-genet-112414-054823.
    • (2015) Annu Rev Genet , vol.49 , pp. 21-45
    • Douam, F.1    Gaska, J.M.2    Winer, B.Y.3    Ding, Q.4    Von Schaewen, M.5    Ploss, A.6
  • 52
    • 84892649729 scopus 로고    scopus 로고
    • Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing
    • Beck A, Tesh RB, Wood TG, Widen SG, Ryman KD, Barrett AD. 2014. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing. J Infect Dis 209:334–344. https://doi.org/10.1093/infdis/jit546.
    • (2014) J Infect Dis , vol.209 , pp. 334-344
    • Beck, A.1    Tesh, R.B.2    Wood, T.G.3    Widen, S.G.4    Ryman, K.D.5    Barrett, A.D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.