-
1
-
-
85042000470
-
-
Securing the Internet of Things: A Proposed Framework
-
Securing the Internet of Things: A Proposed Framework, 2016, http://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html.
-
(2016)
-
-
-
2
-
-
84991768903
-
Octopus: An edge-fog mutual authentication scheme
-
Ibrahim, M., Octopus: An edge-fog mutual authentication scheme. J. Netw. Secur., 18(6), 2016.
-
(2016)
J. Netw. Secur.
, vol.18
, Issue.6
-
-
Ibrahim, M.1
-
3
-
-
84912130127
-
The fog computing paradigm: Scenarios and security issues
-
IEEE Federated Conference on Computer Science and Information Systems.
-
I. Stojemovic, S. Wen, The fog computing paradigm: Scenarios and security issues, in: IEEE Federated Conference on Computer Science and Information Systems, 2014.
-
(2014)
-
-
Stojemovic, I.1
Wen, S.2
-
4
-
-
85015190263
-
Fog computing for the internet of things: Security and privacy issues
-
Alrawais, A., Alhothaily, A., Hu, C., Cheng, X., Fog computing for the internet of things: Security and privacy issues. IEEE Internet Comput. 21:2 (2017), 34–42.
-
(2017)
IEEE Internet Comput.
, vol.21
, Issue.2
, pp. 34-42
-
-
Alrawais, A.1
Alhothaily, A.2
Hu, C.3
Cheng, X.4
-
5
-
-
85041774197
-
Security and privacy issues of fog computing: A survey
-
International Conference on Wireless Algorithms, Systems and Applications, WASA.
-
S. Yi, Z. Qin, Q. Li, Security and privacy issues of fog computing: A survey, in: International Conference on Wireless Algorithms, Systems and Applications, WASA, 2015.
-
(2015)
-
-
Yi, S.1
Qin, Z.2
Li, Q.3
-
6
-
-
85019760246
-
-
IEEE 802.11 network anomaly detection and attack classification: A deep learning approach, in: 2017 IEEE Wireless Communications and Networking Conference, WCNC, San Francisco, CA
-
V.L.L. Thing, IEEE 802.11 network anomaly detection and attack classification: A deep learning approach, in: 2017 IEEE Wireless Communications and Networking Conference, WCNC, San Francisco, CA, 2017, pp. 1–6.
-
(2017)
, pp. 1-6
-
-
Thing, V.L.L.1
-
7
-
-
84962359508
-
Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset
-
Kolias, C., Kambourakis, G., Stavrou, A., Gritzalis, S., Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset. IEEE Commun. Surv. Tutor. 18:1 (2016), 184–208.
-
(2016)
IEEE Commun. Surv. Tutor.
, vol.18
, Issue.1
, pp. 184-208
-
-
Kolias, C.1
Kambourakis, G.2
Stavrou, A.3
Gritzalis, S.4
-
8
-
-
85042048071
-
-
Introducing Deep Learning: Boosting Cybersecurity With An Artificial Brain, (last accessed on 1.07.17).
-
Guy Caspi, Introducing Deep Learning: Boosting Cybersecurity With An Artificial Brain, http://www.darkreading.com/analytics/introducing-deep-learning-boosting-cybersecurity-with-an-artificial-brain/a/d-id/1326824 (last accessed on 1.07.17).
-
-
-
Caspi, G.1
-
9
-
-
85042001963
-
-
Javaid, Mansoor. Alam, Deep learning approach for network intrusion detection system, in: ACM 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New York.
-
Quamar Niyaz, Weiqing Sun, Ahmad, Y. Javaid, Mansoor. Alam, Deep learning approach for network intrusion detection system, in: ACM 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New York, 2016.
-
(2016)
-
-
Niyaz, Q.1
Sun, W.2
Ahmad, Y.3
-
10
-
-
84975321732
-
Intrusion detection system using deep neural network for in-vehicle network security
-
Kang, M.-J., Kang, J.-W., Intrusion detection system using deep neural network for in-vehicle network security. PLoS One, 11(6), 2016, e0155781, 10.1371/journal.pone.0155781.
-
(2016)
PLoS One
, vol.11
, Issue.6
, pp. e0155781
-
-
Kang, M.-J.1
Kang, J.-W.2
-
11
-
-
84930981315
-
A hybrid malicious code detection method based on deep learning
-
Li, Y., Ma, R., Jiao, R., A hybrid malicious code detection method based on deep learning. Int. J. Secur. Appl. 9 (2015), 205–216.
-
(2015)
Int. J. Secur. Appl.
, vol.9
, pp. 205-216
-
-
Li, Y.1
Ma, R.2
Jiao, R.3
-
12
-
-
84864073449
-
-
Greedy layer-wise training of deep networks, in: Advances in neural …Nr. 1, S. 2007, —
-
Yoshua Bengio, Pascal Lamblin, Greedy layer-wise training of deep networks, in: Advances in neural …Nr. 1, S. 2007, pp. 153–160 — ISBN: 0262195682.
-
-
-
Bengio, Y.1
Lamblin, P.2
-
13
-
-
84956802323
-
-
A tutorial survey of architectures, algorithms, and applications for deep learning, in: APSIPA Transactions on Signal and Information Processing Bd. 3, Nr. January, S. e2 — ISBN
-
Li Deng, A tutorial survey of architectures, algorithms, and applications for deep learning, in: APSIPA Transactions on Signal and Information Processing Bd. 3, 2014, Nr. January, S. e2 — ISBN: 2048-7703.
-
(2014)
-
-
Deng, L.1
-
14
-
-
0032203257
-
-
Gradient based learning applied to document recognition, in: Proceedings of the IEEE Bd. 86 Nr. 11, S. 1998, — ISBN
-
Yann Lecun, Bottou Leon, Bengio Yoshua, Haffner Patrick, Gradient based learning applied to document recognition, in: Proceedings of the IEEE Bd. 86 Nr. 11, S. 1998, pp. 2278–2324 — ISBN: 0018-9219.
-
-
-
Lecun, Y.1
Leon, B.2
Yoshua, B.3
Patrick, H.4
-
15
-
-
85041997614
-
-
M'A. Ranzato, A. Senior, P. Tucker, K. Yang, A.Y. Ng, Large Scale Distributed Deep Networks.
-
J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M'A. Ranzato, A. Senior, P. Tucker, K. Yang, A.Y. Ng, Large Scale Distributed Deep Networks.
-
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
-
16
-
-
79551480483
-
-
Pierre-Antoine Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion, in: Journal of Machine Learning Research Bd. 11 Nr. 3, S. 2010, — ISBN
-
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion, in: Journal of Machine Learning Research Bd. 11 Nr. 3, S. 2010, pp. 3371–3408 — ISBN 1532-4435.
-
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
-
17
-
-
84985930709
-
Anomaly detection using autoencoders with nonlinear dimensionality reduction
-
Rahman Ashfaqur Deng Jeremiah Li Jiuyong (MLSDA’14) ACM New York, NY, USA 8 pages
-
Sakurada, Mayu, Yairi, Takehisa, Anomaly detection using autoencoders with nonlinear dimensionality reduction. Rahman, Ashfaqur, Deng, Jeremiah, Li, Jiuyong, (eds.) Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, (MLSDA’14), 2014, ACM, New York, NY, USA, 4, 10.1145/2689746.2689747 8 pages.
-
(2014)
Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis
, pp. 4
-
-
Sakurada, M.1
Yairi, T.2
-
18
-
-
85042008629
-
-
AdaptiveAnomaliesDetectionwithDeepNetwork, on COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications, IARIA.
-
Chao Wu, Yike Guo, Yajie Ma, AdaptiveAnomaliesDetectionwithDeepNetwork, on COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications, IARIA, 2015.
-
(2015)
-
-
Wu, C.1
Guo, Y.2
Ma, Y.3
-
19
-
-
84958231548
-
A deep learning approach for detecting malicious JavaScript code
-
Wang, Y., Cai, W., Wei, P., A deep learning approach for detecting malicious JavaScript code. Secur. Commun. Netw. 9 (2016), 1520–1534, 10.1002/sec.1441.
-
(2016)
Secur. Commun. Netw.
, vol.9
, pp. 1520-1534
-
-
Wang, Y.1
Cai, W.2
Wei, P.3
-
20
-
-
85030681489
-
Lightweight cybersecurity schemes using elliptic curve cryptography in publish-subscribe fog computing
-
Diro, Abebe Abeshu, Chilamkurti, Naveen, Kumar, Neeraj, Lightweight cybersecurity schemes using elliptic curve cryptography in publish-subscribe fog computing. Mob. Netw. Appl., 2017, 1–11.
-
(2017)
Mob. Netw. Appl.
, pp. 1-11
-
-
Diro, A.A.1
Chilamkurti, N.2
Kumar, N.3
-
21
-
-
85042042521
-
-
(last access on 14.11.16).
-
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html (last access on 14.11.16).
-
-
-
-
22
-
-
85041996409
-
-
Patrikakis, Charalampos, Masikos, Michalis, Zouraraki, Olga, Distrib. Denial Serv. Attacks Internet Protoc. J., 7(4), 2004.
-
(2004)
Distrib. Denial Serv. Attacks Internet Protoc. J.
, vol.7
, Issue.4
-
-
Patrikakis, C.1
Masikos, M.2
Zouraraki, O.3
-
23
-
-
84995489061
-
“A Methodological Approach for Assessing Amplified Reflection Distributed Denial of Service on the Internet of Things” Ed. Muhammad Imran et al.
-
Gondim, Costa, José João, et al. “A Methodological Approach for Assessing Amplified Reflection Distributed Denial of Service on the Internet of Things” Ed. Muhammad Imran et al. Sensors, 16(11), 2016, p1855.
-
(2016)
Sensors
, vol.16
, Issue.11
, pp. p1855
-
-
Gondim, C.1
José, J.2
-
24
-
-
77950575061
-
A detailed analysis of the KDD CUP 99 data set
-
Second IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA.
-
M. Tavallaee, E. Bagheri, W. Lu, A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in: Second IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA, 2009.
-
(2009)
-
-
Tavallaee, M.1
Bagheri, E.2
Lu, W.3
Ghorbani, A.4
-
25
-
-
84862286946
-
-
Deep boltzmann machines, in: Proceedings of The 12th International Conference on Artificial Intelligence and Statistics, PMLR 5:448-455.
-
Ruslan Salakhutdinov, Geoffrey E. Hinton, Deep boltzmann machines, in: Proceedings of The 12th International Conference on Artificial Intelligence and Statistics, PMLR 5:448-455, 2009.
-
(2009)
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
26
-
-
85042014551
-
-
last accessed on 31.05.17.
-
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression, last accessed on 31.05.17.
-
-
-
-
27
-
-
85042017934
-
-
Knowledge discovery in databases DARPA archive, last accessed on 31.05.17.
-
Knowledge discovery in databases DARPA archive, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, last accessed on 31.05.17.
-
-
-
-
28
-
-
84859430323
-
Toward developing a systematic approach to generate benchmark datasets for intrusion detection
-
Shiravi, Ali, Shiravi, Hadi, Tavallaee, Mahbod, Ghorbani, Ali A., Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31:3 (2012), 357–374.
-
(2012)
Comput. Secur.
, vol.31
, Issue.3
, pp. 357-374
-
-
Shiravi, A.1
Shiravi, H.2
Tavallaee, M.3
Ghorbani, A.A.4
-
29
-
-
85085251984
-
Spark: cluster computing with working sets
-
USENIX Association Berkeley, CA, USA
-
Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J., Shenker, Scott, Stoica, Ion, Spark: cluster computing with working sets. Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, (HotCloud’10), 2010, USENIX Association, Berkeley, CA, USA, 10-10.
-
(2010)
Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, (HotCloud’10)
, pp. 10-10
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
30
-
-
85042018515
-
Keras deep learning P.W.D. Charles Project Title 2013
-
(last accessed on 30.11.16).
-
Keras deep learning P.W.D. Charles Project Title 2013, https://github.com/charlespwd/project-title (last accessed on 30.11.16).
-
-
-
-
31
-
-
85010301146
-
Deep learning approach for network intrusion detection in software defined networking
-
IEEE Fez, Morocco, Oct 26–29
-
Tang, T.A., Mhamdi, L., McLernon, D., et al. Deep learning approach for network intrusion detection in software defined networking. UNSPECIFIED The International Conference on Wireless Networks and Mobile Communications, (WINCOM’16), 2016, IEEE, Fez, Morocco, Oct 26–29.
-
(2016)
UNSPECIFIED The International Conference on Wireless Networks and Mobile Communications, (WINCOM’16)
-
-
Tang, T.A.1
Mhamdi, L.2
McLernon, D.3
|