메뉴 건너뛰기




Volumn 12, Issue 1, 2014, Pages 495-516

Towards fully data driven ground-motion prediction models for Europe

Author keywords

Ground motion; Neural networks; Pseudo Spectral Acceleration; RESORCE;

Indexed keywords

NEURAL NETWORKS; PREDICTIVE ANALYTICS; RANDOM PROCESSES; STATISTICS;

EID: 85028232097     PISSN: 1570761X     EISSN: 15731456     Source Type: Journal    
DOI: 10.1007/s10518-013-9481-0     Document Type: Article
Times cited : (118)

References (28)
  • 1
    • 0000927597 scopus 로고
    • A stable algorithm for regression analyses using the random-effects model
    • Abrahamson NA, Youngs RR (1992) A stable algorithm for regression analyses using the random-effects model. Bull Seismol Soc Am 82: 505-510.
    • (1992) Bull Seismol Soc Am , vol.82 , pp. 505-510
    • Abrahamson, N.A.1    Youngs, R.R.2
  • 2
    • 77950554960 scopus 로고    scopus 로고
    • Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East
    • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81: 195-206.
    • (2010) Seismol Res Lett , vol.81 , pp. 195-206
    • Akkar, S.1    Bommer, J.J.2
  • 3
    • 78650124302 scopus 로고    scopus 로고
    • A local ground-motion predictive model for Turkey and its comparison with other regional and global ground-motion models
    • Akkar S, Çagnan Z (2010) A local ground-motion predictive model for Turkey and its comparison with other regional and global ground-motion models. Bull Seismol Soc Am 100: 2978-2995.
    • (2010) Bull Seismol Soc Am , vol.100 , pp. 2978-2995
    • Akkar, S.1    Çagnan, Z.2
  • 6
    • 80055054635 scopus 로고    scopus 로고
    • Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
    • Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89: 2176-2194.
    • (2011) Comput Struct , vol.89 , pp. 2176-2194
    • Alavi, A.H.1    Gandomi, A.H.2
  • 7
    • 0034451183 scopus 로고    scopus 로고
    • Expected shape of regressions for ground-motion parameters on rock
    • Anderson JG (2000) Expected shape of regressions for ground-motion parameters on rock. Bull Seismol Soc Am 90: S43-S52.
    • (2000) Bull Seismol Soc Am , vol.90 , pp. 43-52
    • Anderson, J.G.1
  • 8
    • 40549142780 scopus 로고    scopus 로고
    • Site amplification and attenuation via downhole array seismogram inversion: A comparative study of the 2003 Miyagi-Oki, aftershock sequence
    • Assimaki D, Li W (2008) Site amplification and attenuation via downhole array seismogram inversion: a comparative study of the 2003 Miyagi-Oki, aftershock sequence. Bull Seism Soc Am 98: 301-330.
    • (2008) Bull Seism Soc Am , vol.98 , pp. 301-330
    • Assimaki, D.1    Li, W.2
  • 11
    • 84857686079 scopus 로고    scopus 로고
    • Site effect assessment using KiK-net data-part 2-site amplification prediction equation (SAPE) based on f0 and Vsz
    • Cadet H, Bard PY, Duval AM, Bertrand E (2012) Site effect assessment using KiK-net data-part 2-site amplification prediction equation (SAPE) based on f0 and Vsz. Bull Earthq Eng 10: 451-489. doi: 10. 1007/s10518-011-9298-7.
    • (2012) Bull Earthq Eng , vol.10 , pp. 451-489
    • Cadet, H.1    Bard, P.Y.2    Duval, A.M.3    Bertrand, E.4
  • 14
    • 84864979955 scopus 로고    scopus 로고
    • Neuronal approach and the use of kik-net network to generate response spectrum on the surface
    • Derras B, Bekkouche A, Zendagui D (2010) Neuronal approach and the use of kik-net network to generate response spectrum on the surface. Jordan J Civ Eng 4: 12-21.
    • (2010) Jordan J Civ Eng , vol.4 , pp. 12-21
    • Derras, B.1    Bekkouche, A.2    Zendagui, D.3
  • 15
    • 84865017965 scopus 로고    scopus 로고
    • Adapting the neural network approach to PGA prediction: An example based on the KiK-net data
    • Derras B, Bard PY, Cotton F, Bekkouche A (2012) Adapting the neural network approach to PGA prediction: an example based on the KiK-net data. Bull Seism Soc Am 102: 1446-1461 http://www. bssaonline. org/content/102/4/1446. abstract.
    • (2012) Bull Seism Soc Am , vol.102 , pp. 1446-1461
    • Derras, B.1    Bard, P.Y.2    Cotton, F.3    Bekkouche, A.4
  • 16
    • 79960090901 scopus 로고    scopus 로고
    • Modeling the difference in ground-motion magnitude-scaling in small and large earthquakes
    • Douglas J, Jousset P (2011) Modeling the difference in ground-motion magnitude-scaling in small and large earthquakes. Seismol Res Lett 82: 504-508.
    • (2011) Seismol Res Lett , vol.82 , pp. 504-508
    • Douglas, J.1    Jousset, P.2
  • 17
    • 34250222088 scopus 로고    scopus 로고
    • Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks
    • García SR, Romo MP, Mayoral JM (2007) Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks. Geofísica Int 46: 51-63.
    • (2007) Geofísica Int , vol.46 , pp. 51-63
    • García, S.R.1    Romo, M.P.2    Mayoral, J.M.3
  • 18
    • 84865036146 scopus 로고    scopus 로고
    • Handbook of neural network signal processing
    • Hu YH, Hwang JN (2002) Handbook of neural network signal processing. Acoust Soc Am 111: 2525-2526.
    • (2002) Acoust Soc Am , vol.111 , pp. 2525-2526
    • Hu, Y.H.1    Hwang, J.N.2
  • 19
    • 47549116388 scopus 로고    scopus 로고
    • Neural networks based attenuation of strong motion peaks in Europe
    • Irshad A, El Naggar H, Khan AN (2008) Neural networks based attenuation of strong motion peaks in Europe. J Earthq Eng 12: 663-680.
    • (2008) J Earthq Eng , vol.12 , pp. 663-680
    • Irshad, A.1    El Naggar, H.2    Khan, A.N.3
  • 20
    • 28844437755 scopus 로고    scopus 로고
    • Neural network estimation of ground peak acceleration at stations along Taiwan high-speed rail system
    • Kerh T, Ting SB (2005) Neural network estimation of ground peak acceleration at stations along Taiwan high-speed rail system. Eng Appl Artif Intell 18: 857-866.
    • (2005) Eng Appl Artif Intell , vol.18 , pp. 857-866
    • Kerh, T.1    Ting, S.B.2
  • 21
    • 46549086737 scopus 로고    scopus 로고
    • Surface-to-base amplification evaluated from KiK-net vertical array strong motion records
    • Kokusho T, Sato K (2008) Surface-to-base amplification evaluated from KiK-net vertical array strong motion records. Soil Dyn Earthq Eng 28: 707-716.
    • (2008) Soil Dyn Earthq Eng , vol.28 , pp. 707-716
    • Kokusho, T.1    Sato, K.2
  • 22
    • 77955555183 scopus 로고    scopus 로고
    • Should average shear-wave velocity in the top 30m of soil be used to describe seismic amplification
    • Lee VW, Trifunac MD (2010) Should average shear-wave velocity in the top 30m of soil be used to describe seismic amplification. Soil Dyn Earthq Eng 30: 1250-1258.
    • (2010) Soil Dyn Earthq Eng , vol.30 , pp. 1250-1258
    • Lee, V.W.1    Trifunac, M.D.2
  • 25
    • 44649129329 scopus 로고    scopus 로고
    • A learning rule for very simple universal approximators consisting of a single layer of perceptrons
    • Peter A, Harald B, Wolfgang M (2008) A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Netw 21: 786-795.
    • (2008) Neural Netw , vol.21 , pp. 786-795
    • Peter, A.1    Harald, B.2    Wolfgang, M.3
  • 26
    • 0030243770 scopus 로고    scopus 로고
    • Modified quasi-Newton methods for training neural networks
    • Robitaille B, Marcos B, Veillette M, Payr G (1996) Modified quasi-Newton methods for training neural networks. Comput Chem Eng 20: 1133-1140.
    • (1996) Comput Chem Eng , vol.20 , pp. 1133-1140
    • Robitaille, B.1    Marcos, B.2    Veillette, M.3    Payr, G.4
  • 27
    • 84873502275 scopus 로고    scopus 로고
    • A nonlinear site amplification model for the next pan European ground motion prediction equations
    • Sandıkkaya MA, Akkar S, Bard PY (2013) A nonlinear site amplification model for the next pan European ground motion prediction equations. Bull Seism Soc Am, February 2013, 103: 19-32, doi: 10. 1785/0120120008.
    • (2013) Bull Seism Soc Am, February 2013 , vol.103 , pp. 19-32
    • Sandıkkaya, M.A.1    Akkar, S.2    Bard, P.Y.3
  • 28
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural networkmodels
    • WolfgangM (1997) Networks of spiking neurons: the third generation of neural networkmodels. Neural Netw 10: 1659-1671.
    • (1997) Neural Netw , vol.10 , pp. 1659-1671
    • Wolfgang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.