메뉴 건너뛰기




Volumn 35, Issue 2, 2015, Pages 127-151

Benjamini-Schramm convergence and the distribution of chromatic roots for sparse graphs

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85027958359     PISSN: 02099683     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00493-014-3066-7     Document Type: Article
Times cited : (17)

References (13)
  • 1
    • 60349088691 scopus 로고    scopus 로고
    • Counting without sampling. Asymptotics of the logpartition function for certain statistical physics models
    • A. Bandyopadhyay and D. Gamarnik: Counting without sampling. Asymptotics of the logpartition function for certain statistical physics models, Random Structures & Algorithms33 (2008), 452–479.
    • (2008) Random Structures & Algorithms , vol.33 , pp. 452-479
    • Bandyopadhyay, A.1    Gamarnik, D.2
  • 2
    • 29744464068 scopus 로고    scopus 로고
    • Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs
    • C. Borgs: Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs, Combinatorics, Probability and Computing15 (2006), 63–74.
    • (2006) Combinatorics, Probability and Computing , vol.15 , pp. 63-74
    • Borgs, C.1
  • 3
    • 0242278812 scopus 로고    scopus 로고
    • Recurrence of distributional limits of finite planar graphs
    • I. Benjamini and O. Schramm: Recurrence of distributional limits of finite planar graphs, Electron. J. Probab.6 (2001), 1–13.
    • (2001) Electron. J. Probab. , vol.6
    • Benjamini, I.1    Schramm, O.2
  • 5
    • 85028222598 scopus 로고    scopus 로고
    • P. Csikvári and P. E. Frenkel: Benjamini-Schramm continuity of root moments of graph polynomials
    • P. Csikvári and P. E. Frenkel: Benjamini-Schramm continuity of root moments of graph polynomials, http://arxiv.org/abs/1204.0463
  • 8
    • 0001805926 scopus 로고
    • Uniform approximations to functions of a complex variable
    • S. N. Mergelyan: Uniform approximations to functions of a complex variable, Uspehi Mat. Nauk (N.S.)7 (1952), 31–122.
    • (1952) Uspehi Mat. Nauk (N.S.) , vol.7 , pp. 31-122
    • Mergelyan, S.N.1
  • 9
    • 0037969594 scopus 로고    scopus 로고
    • Potts model on infinite graphs and the limit of chromatic polynomials
    • A. Procacci, B. Scoppola and V. Gerasimov: Potts model on infinite graphs and the limit of chromatic polynomials, Commun. Math. Phys.235 (2003), 215–231.
    • (2003) Commun. Math. Phys. , vol.235 , pp. 215-231
    • Procacci, A.1    Scoppola, B.2    Gerasimov, V.3
  • 10
    • 34347166234 scopus 로고
    • On the foundations of combinatorial theory I. Theory of Möbius functions
    • G. C. Rota: On the foundations of combinatorial theory I. Theory of Möbius functions, Probability theory and related flelds2 (1964), 340–368.
    • (1964) Probability theory and related flelds , vol.2 , pp. 340-368
    • Rota, G.C.1
  • 11
    • 67349158736 scopus 로고    scopus 로고
    • Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models V. Further Results for the Square-Lattice Chromatic Polynomial
    • J. Salas and A. D. Sokal: Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys.135 (2009), 279–373.
    • (2009) J. Stat. Phys. , vol.135 , pp. 279-373
    • Salas, J.1    Sokal, A.D.2
  • 12
    • 0035608319 scopus 로고    scopus 로고
    • Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition functions
    • A. D. Sokal: Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition functions, Combinatorics, Probability and Computing10 (2001), 41–77.
    • (2001) Combinatorics, Probability and Computing , vol.10 , pp. 41-77
    • Sokal, A.D.1
  • 13
    • 29844450023 scopus 로고    scopus 로고
    • The multivariate Tutte polynomial (alias Potts model) for graphs and matroids
    • Webb B.S., (ed)
    • A. D. Sokal: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, in: Surveys in Combinatorics (Webb, BS, ed.), 2005, 173–226. Cambridge University Press.
    • (2005) Surveys in Combinatorics , pp. 173-226
    • Sokal, A.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.