메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 126-145

An improved artificial immune recognition system with the opposite sign test for feature selection

Author keywords

Artificial immune recognition system; Feature selection; Metaheuristic; Non parametric test; Opposite sign test

Indexed keywords

CLASSIFICATION (OF INFORMATION); GENE EXPRESSION; TESTING;

EID: 85027951631     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.07.013     Document Type: Article
Times cited : (28)

References (64)
  • 1
    • 58549117670 scopus 로고    scopus 로고
    • Bankruptcy prediction modeling with hybrid casebased reasoning and genetic algorithms approach
    • H. Ahn, and K. Kim Bankruptcy prediction modeling with hybrid casebased reasoning and genetic algorithms approach Appl. Soft Comput. 9 2 2009 599 607
    • (2009) Appl. Soft Comput. , vol.9 , Issue.2 , pp. 599-607
    • Ahn, H.1    Kim, K.2
  • 2
    • 0028496468 scopus 로고
    • Learning Boolean concepts in the presence of many irrelevant features
    • H. Almuallim, and T. Dietterich Learning Boolean concepts in the presence of many irrelevant features Artif. Intell. 69 1994 279 305
    • (1994) Artif. Intell. , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.2
  • 3
    • 34548677479 scopus 로고    scopus 로고
    • A lot of randomness is hiding in accuracy
    • A. Ben-David A lot of randomness is hiding in accuracy Eng. Appl. Artif. Intell. 20 2007 875 885
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , pp. 875-885
    • Ben-David, A.1
  • 4
    • 75749136004 scopus 로고    scopus 로고
    • Analysis and benchmarking of metaheuristic techniques for lay-up optimization
    • M.W. Bloomfield, J.E. Herencia, and P.M. Weaver Analysis and benchmarking of metaheuristic techniques for lay-up optimization Comput. Struct. 88 5-6 2010 272 282
    • (2010) Comput. Struct. , vol.88 , Issue.56 , pp. 272-282
    • Bloomfield, M.W.1    Herencia, J.E.2    Weaver, P.M.3
  • 5
    • 0026453958 scopus 로고
    • Training a 3-node neural networks is NP-complete
    • A.L. Blum, and R.L. Rivest Training a 3-node neural networks is NP-complete Neural Networks 5 1992 117 127
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 6
    • 85028119126 scopus 로고    scopus 로고
    • Multiple comparisons procedures
    • H.J. Cabral Multiple comparisons procedures Circulation 11 2008 670 698
    • (2008) Circulation , vol.11 , pp. 670-698
    • Cabral, H.J.1
  • 8
    • 67449091641 scopus 로고    scopus 로고
    • AMPSO: A new particle swarm method for nearest neighborhood classification
    • A. Cervantes, I.M. Galvan, and P. Isasi AMPSO: a new particle swarm method for nearest neighborhood classification IEEE Trans. System, Man, Cybern. Part B 39 5 2009 1082 1091
    • (2009) IEEE Trans. System, Man, Cybern. Part B , vol.39 , Issue.5 , pp. 1082-1091
    • Cervantes, A.1    Galvan, I.M.2    Isasi, P.3
  • 9
    • 84863296178 scopus 로고    scopus 로고
    • An improved particle swarm optimization for feature selection
    • L.F. Chen, C.T. Su, and K.H. Chen An improved particle swarm optimization for feature selection Intell. Data Anal. 16 2 2012 167 182
    • (2012) Intell. Data Anal. , vol.16 , Issue.2 , pp. 167-182
    • Chen, L.F.1    Su, C.T.2    Chen, K.H.3
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 14
    • 84866498991 scopus 로고    scopus 로고
    • Integrating instance selection, instance weighting and feature weighting for nearest neighbor classifiers by coevolutionary algorithms
    • J. Derrac, I. Triguero, S. García, and F. Herrera Integrating instance selection, instance weighting and feature weighting for nearest neighbor classifiers by coevolutionary algorithms IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 42 5 2012 1383 1397
    • (2012) IEEE Trans. Syst. Man Cybern. - Part B: Cybern. , vol.42 , Issue.5 , pp. 1383-1397
    • Derrac, J.1    Triguero, I.2    García, S.3    Herrera, F.4
  • 16
    • 33846316693 scopus 로고    scopus 로고
    • Self-generating prototypes for pattern
    • H.A. Fayed, S.R. Hashem, and A.F. Atiya Self-generating prototypes for pattern Pattern Recogn. 40 5 2007 1498 1509
    • (2007) Pattern Recogn. , vol.40 , Issue.5 , pp. 1498-1509
    • Fayed, H.A.1    Hashem, S.R.2    Atiya, A.F.3
  • 17
    • 3142672346 scopus 로고    scopus 로고
    • Evolutionary design of nearest prototype classifiers
    • F. Fernandez, and P. Isasi Evolutionary design of nearest prototype classifiers J. Heuristics 10 4 2004 431 454
    • (2004) J. Heuristics , vol.10 , Issue.4 , pp. 431-454
    • Fernandez, F.1    Isasi, P.2
  • 18
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. García, A. Fernández, J. Luengo, and F. Herrera A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability Soft. Comput. 13 10 2009 959 977
    • (2009) Soft. Comput. , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 19
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 10 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 20
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification: Taxonomy and empirical study
    • S. García, J. Derrac, J.R. Cano, and F. Herrera Prototype selection for nearest neighbor classification: taxonomy and empirical study IEEE Trans. Pattern Anal. Mach. Intell. 34 3 2012 417 435
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.R.3    Herrera, F.4
  • 21
    • 85065703189 scopus 로고    scopus 로고
    • Correlation - Based feature selection for discrete and numeric class machine learning
    • M.A. Hall, Correlation - based feature selection for discrete and numeric class machine learning, in: Proceedings of 17th International Conference in Machine Learning, 2000, pp. 359-366.
    • (2000) Proceedings of 17th International Conference in Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 23
    • 0036832996 scopus 로고    scopus 로고
    • Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm
    • S.Y. Ho, C.C. Liu, and S. Liu Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm Pattern Recogn. Lett. 23 13 2002 1495 1503
    • (2002) Pattern Recogn. Lett. , vol.23 , Issue.13 , pp. 1495-1503
    • Ho, S.Y.1    Liu, C.C.2    Liu, S.3
  • 24
    • 67549091208 scopus 로고    scopus 로고
    • A method of learning weighted similarity function to improve the performance of nearest neighbour
    • M.Z. Jahromi, E. Parvinnia, and R. John A method of learning weighted similarity function to improve the performance of nearest neighbour Inf. Sci. 179 17 2009 2964 2973
    • (2009) Inf. Sci. , vol.179 , Issue.17 , pp. 2964-2973
    • Jahromi, M.Z.1    Parvinnia, E.2    John, R.3
  • 26
    • 0037404505 scopus 로고    scopus 로고
    • Enhancing prototype reduction schemes with lvq3-type algorithms
    • S.W. Kim, and J. Oomenn Enhancing prototype reduction schemes with lvq3-type algorithms Pattern Recogn. 36 2003 1083 1093
    • (2003) Pattern Recogn. , vol.36 , pp. 1083-1093
    • Kim, S.W.1    Oomenn, J.2
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 29
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: Simultaneous editing and feature selection
    • L.I. Kuncheva, and L.C. Jain Nearest neighbor classifier: simultaneous editing and feature selection Pattern Recogn. Lett. 20 11-13 1999 1149 1156
    • (1999) Pattern Recogn. Lett. , vol.20 , Issue.1113 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.C.2
  • 30
    • 0036684204 scopus 로고    scopus 로고
    • Discovering useful concept prototypes for classification based on filtering and abstraction
    • W. Lam, C.K. Keung, and D. Liu Discovering useful concept prototypes for classification based on filtering and abstraction IEEE Trans. Pattern Anal. Mach. Intell. 4 8 2002 1075 1090
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.4 , Issue.8 , pp. 1075-1090
    • Lam, W.1    Keung, C.K.2    Liu, D.3
  • 32
    • 84878017358 scopus 로고    scopus 로고
    • Large margin subspace learning for feature selection
    • B. Liu, B. Fang, X. Liu, J. Chen, Z. Huang, and X. He Large margin subspace learning for feature selection Pattern Recogn. 46 2013 2798 2806
    • (2013) Pattern Recogn. , vol.46 , pp. 2798-2806
    • Liu, B.1    Fang, B.2    Liu, X.3    Chen, J.4    Huang, Z.5    He, X.6
  • 35
    • 33745421067 scopus 로고    scopus 로고
    • Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
    • M. Lozano, J.M. Sotoca, J.S. Sanchez, F. Pla, E. Pekalska, and R.P.W. Duin Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces Pattern Recogn. 39 10 2006 1827 1838
    • (2006) Pattern Recogn. , vol.39 , Issue.10 , pp. 1827-1838
    • Lozano, M.1    Sotoca, J.M.2    Sanchez, J.S.3    Pla, F.4    Pekalska, E.5    Duin, R.P.W.6
  • 38
    • 58149475488 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • L. Nanni, and A. Lumini Particle swarm optimization for prototype reduction Neurocomputing 72 4-6 2008 1092 1097
    • (2008) Neurocomputing , vol.72 , Issue.46 , pp. 1092-1097
    • Nanni, L.1    Lumini, A.2
  • 39
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2,1 norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding Efficient and robust feature selection via joint l2,1 norms minimization Adv. Neural Inf. Process. Syst. 23 2010 1813 1821
    • (2010) Adv. Neural Inf. Process. Syst. , vol.23 , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 40
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • A.Y. Ng, On feature selection: learning with exponentially many irrelevant features as training examples, in: Proceedings of 15th International Conference in Machine Learning, 1998, pp. 404-412.
    • (1998) Proceedings of 15th International Conference in Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 42
    • 33746412073 scopus 로고    scopus 로고
    • Learning weighted metrics to minimize nearest-neighbor classification error
    • P. Paredes, and E. Vidal Learning weighted metrics to minimize nearest-neighbor classification error IEEE Trans. Pattern Anal. Mach. Intell. 28 7 2006 1100 1110
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.7 , pp. 1100-1110
    • Paredes, P.1    Vidal, E.2
  • 43
    • 34548015421 scopus 로고    scopus 로고
    • An improved approach to medical data sets classification: Artificial immune recognition system with fuzzy resource allocation mechanism
    • K. Polat, and S. Güneş An improved approach to medical data sets classification: artificial immune recognition system with fuzzy resource allocation mechanism Expert Syst. 24 4 2007 252 270
    • (2007) Expert Syst. , vol.24 , Issue.4 , pp. 252-270
    • Polat, K.1    Güneş, S.2
  • 44
    • 19744376790 scopus 로고    scopus 로고
    • A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm
    • T. Raicharoen, and C. Lursinsap A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm Pattern Recogn. Lett. 26 10 2005 1554 1567
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.10 , pp. 1554-1567
    • Raicharoen, T.1    Lursinsap, C.2
  • 47
    • 18144451785 scopus 로고    scopus 로고
    • High training set size reduction by space partitioning and prototype abstraction
    • J.S. Sanchez High training set size reduction by space partitioning and prototype abstraction Pattern Recogn. 37 7 2004 1561 1564
    • (2004) Pattern Recogn. , vol.37 , Issue.7 , pp. 1561-1564
    • Sanchez, J.S.1
  • 49
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous feature selection and feature weighting using hybrid tabu search/ψ-nearest neighbor classifier
    • M.A. Tahir, A. Bouridane, and F. Kurugollu Simultaneous feature selection and feature weighting using hybrid tabu search/ψ-nearest neighbor classifier Pattern Recogn. Lett. 28 4 2007 438 446
    • (2007) Pattern Recogn. Lett. , vol.28 , Issue.4 , pp. 438-446
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3
  • 50
    • 0034023975 scopus 로고    scopus 로고
    • An artificial immune system for data analysis
    • J. Timmis, M. Neal, and J. Hunt An artificial immune system for data analysis Biosystems 55 2000 143 150
    • (2000) Biosystems , vol.55 , pp. 143-150
    • Timmis, J.1    Neal, M.2    Hunt, J.3
  • 52
    • 84871924281 scopus 로고    scopus 로고
    • Genetic algorithms in feature and instance selection
    • C.F. Tsai, W. Eberle, and C.Y. Chu Genetic algorithms in feature and instance selection Knowl.-Based Syst. 39 2013 240 247
    • (2013) Knowl.-Based Syst. , vol.39 , pp. 240-247
    • Tsai, C.F.1    Eberle, W.2    Chu, C.Y.3
  • 53
    • 84871063638 scopus 로고    scopus 로고
    • Research on feature selection based on improved particle swarm optimization
    • G.Q. Wang, J.B. Jia, and X.Y. Li Research on feature selection based on improved particle swarm optimization Adv. Mater. Res. 591-593 2012 2651 2654
    • (2012) Adv. Mater. Res. , vol.591-593 , pp. 2651-2654
    • Wang, G.Q.1    Jia, J.B.2    Li, X.Y.3
  • 55
    • 3543121725 scopus 로고    scopus 로고
    • Artificial immune recognition system (AIRS): An immune-inspired supervised learning algorithm
    • A. Watkins, and J. Timmis Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm Genet. Program Evolvable Mach. 5 3 2004 291 317
    • (2004) Genet. Program Evolvable Mach. , vol.5 , Issue.3 , pp. 291-317
    • Watkins, A.1    Timmis, J.2
  • 56
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • D. Wettschereck, D.W. Aha, and T. Mohri A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms Artif. Intell. Rev. 11 1997 273 314
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 57
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • D.R. Wilson, and T.R. Martinez Reduction techniques for instance-based learning algorithms Mach. Learn. 38 3 2000 257 286
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 61
    • 1842787628 scopus 로고    scopus 로고
    • A vector quantization method for nearest neighbor classifier design
    • C.W. Yen, C.N. Young, and M.L. Nagurka A vector quantization method for nearest neighbor classifier design Pattern Recogn. Lett. 25 6 2004 725 731
    • (2004) Pattern Recogn. Lett. , vol.25 , Issue.6 , pp. 725-731
    • Yen, C.W.1    Young, C.N.2    Nagurka, M.L.3
  • 62
  • 63
    • 80053925880 scopus 로고    scopus 로고
    • Feature subset selection based on bio-inspired algorithms
    • C. Yuen, B. Oh, J. Yang, and J. Nang Feature subset selection based on bio-inspired algorithms J. Inf. Sci. Eng. 27 5 2011 1667 1686
    • (2011) J. Inf. Sci. Eng. , vol.27 , Issue.5 , pp. 1667-1686
    • Yuen, C.1    Oh, B.2    Yang, J.3    Nang, J.4
  • 64
    • 79955951761 scopus 로고    scopus 로고
    • A modified artificial immune system based pattern recognition approach - An application to clinical diagnostics
    • W. Zhao, and C.E. Davis A modified artificial immune system based pattern recognition approach - an application to clinical diagnostics Artif. Intell. Med. 52 1 2011 1 9
    • (2011) Artif. Intell. Med. , vol.52 , Issue.1 , pp. 1-9
    • Zhao, W.1    Davis, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.