메뉴 건너뛰기




Volumn 45, Issue 9, 2015, Pages 1811-1822

Large-scale unsupervised hashing with shared structure learning

Author keywords

Locality sensitive hashing (LSH); nearest neighbor search; shared structure learning; unsupervised hashing.

Indexed keywords

CONTENT BASED RETRIEVAL; HASH FUNCTIONS; IMAGE RETRIEVAL; LEARNING ALGORITHMS; NEAREST NEIGHBOR SEARCH;

EID: 85027950483     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2360856     Document Type: Article
Times cited : (54)

References (53)
  • 1
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • J. L. Bentley, "Multidimensional binary search trees used for associative searching, " Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975
    • (1975) Commun ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 2
    • 84866651203 scopus 로고    scopus 로고
    • Mobile product search with bag of hash bits and boundary reranking
    • J. He et al., "Mobile product search with bag of hash bits and boundary reranking, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2012, pp. 3005-3012
    • (2012) Proc IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) , pp. 3005-3012
    • He, J.1
  • 3
    • 84862592052 scopus 로고    scopus 로고
    • Perceptual video hashing robust against geometric distortions
    • S. Xiang, J. Yang, and J. Huang, "Perceptual video hashing robust against geometric distortions, " Sci. China Inf. Sci., vol. 55, no. 7, pp. 1520-1527, 2012
    • (2012) Sci. China Inf. Sci , vol.55 , Issue.7 , pp. 1520-1527
    • Xiang, S.1    Yang, J.2    Huang, J.3
  • 4
    • 84903138314 scopus 로고    scopus 로고
    • Spectral embedded hashing for scalable image retrieval
    • Jul
    • L. Chen, D. Xu, I.-H. Tsang, and X. Li, "Spectral embedded hashing for scalable image retrieval, " IEEE Trans. Cybern., vol. 44, no. 7, pp. 1180-1190, Jul. 2014
    • (2014) IEEE Trans. Cybern , vol.44 , Issue.7 , pp. 1180-1190
    • Chen, L.1    Xu, D.2    Tsang, I.-H.3    Li, X.4
  • 5
    • 84871820803 scopus 로고    scopus 로고
    • Robust video hashing based on representative-dispersive frames
    • X. Nie, J. Liu, J. Sun, L. Wang, and X. Yang, "Robust video hashing based on representative-dispersive frames, " Sci. China Inf. Sci., vol. 56, no. 6, pp. 1-11, 2013
    • (2013) Sci. China Inf. Sci , vol.56 , Issue.6 , pp. 1-11
    • Nie, X.1    Liu, J.2    Sun, J.3    Wang, L.4    Yang, X.5
  • 6
    • 84903137922 scopus 로고    scopus 로고
    • Robust hashing with local models for approximate similarity search
    • Jul
    • J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, "Robust hashing with local models for approximate similarity search, " IEEE Trans. Cybern., vol. 44, no. 7, pp. 1225-1236, Jul. 2014
    • (2014) IEEE Trans. Cybern , vol.44 , Issue.7 , pp. 1225-1236
    • Song, J.1    Yang, Y.2    Li, X.3    Huang, Z.4    Yang, Y.5
  • 7
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Nov
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints, " Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004
    • (2004) Int. J. Comput. Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 8
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope, " Int. J. Comput. Vis., vol. 42, no. 3, pp. 145-175, 2001
    • (2001) Int. J. Comput. Vis , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 9
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching fixed dimensions
    • S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, "An optimal algorithm for approximate nearest neighbor searching fixed dimensions, " J. ACM, vol. 45, no. 6, pp. 891-923, 1998
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 12
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani, "Approximate nearest neighbors: Towards removing the curse of dimensionality, " in Proc. 30th Annu. ACM Symp. Theory Comput. (STOC), 1998, pp. 604-613
    • (1998) Proc. 30th Annu ACM Symp. Theory Comput. (STOC) , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 17
    • 77956496400 scopus 로고    scopus 로고
    • Sequential projection learning for hashing with compact codes
    • J. Wang, S. Kumar, and S.-F. Chang, "Sequential projection learning for hashing with compact codes, " in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 1127-1134
    • (2010) Proc. 27th Int. Conf. Mach. Learn , pp. 1127-1134
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 19
    • 84865410773 scopus 로고    scopus 로고
    • Semi-supervised hashing for largescale search
    • Dec
    • J. Wang, S. Kumar, and S.-F. Chang, "Semi-supervised hashing for largescale search, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12, pp. 2393-2406, Dec. 2012
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell , vol.34 , Issue.12 , pp. 2393-2406
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 20
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Dec
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, "Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2916-2929, Dec. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 22
    • 84887359482 scopus 로고    scopus 로고
    • K-Means hashing: An affinity-preserving quantization method for learning binary compact codes
    • K. He, F. Wen, and J. Sun, "K-Means hashing: An affinity-preserving quantization method for learning binary compact codes, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013, pp. 2938-2945
    • (2013) Proc IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun , pp. 2938-2945
    • He, K.1    Wen, F.2    Sun, J.3
  • 24
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • M. S. Charikar, "Similarity estimation techniques from rounding algorithms, " in Proc. 34th Annu. ACM Symp. Theory Comput., 2002, pp. 380-388
    • (2002) Proc. 34th Annu ACM Symp. Theory Comput , pp. 380-388
    • Charikar, M.S.1
  • 34
    • 84896993153 scopus 로고    scopus 로고
    • Visual reranking through weakly supervised multi-graph learning
    • Apr
    • C. Deng, R. Ji, W. Liu, X. Gao, and D. Tao, "Visual reranking through weakly supervised multi-graph learning, " IEEE Trans. Multimedia, vol. 16, no. 3, pp. 785-795, Apr. 2014
    • (2014) IEEE Trans. Multimedia , vol.16 , Issue.3 , pp. 785-795
    • Deng, C.1    Ji, R.2    Liu, W.3    Gao, X.4    Tao, D.5
  • 35
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Dec
    • R. K. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeled data, " J. Mach. Learn. Res., vol. 6, pp. 1817-1853, Dec. 2005
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 42
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Jan
    • M. Turk and A. Pentland, "Eigenfaces for recognition, " J. Cognit. Neurosci., vol. 3, no. 1, pp. 71-86, Jan. 1991
    • (1991) J. Cognit. Neurosci , vol.3 , Issue.1 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 43
    • 0030214923 scopus 로고    scopus 로고
    • Using discriminant eigenfeatures for image retrieval
    • Aug
    • D. L. Swets and J. J. Weng, "Using discriminant eigenfeatures for image retrieval, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 831-836, Aug. 1996
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell , vol.18 , Issue.8 , pp. 831-836
    • Swets, D.L.1    Weng, J.J.2
  • 44
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding, " Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 45
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Dec
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex multi-task feature learning, " Mach. Learn., vol. 73, no. 3, pp. 243-272, Dec. 2008
    • (2008) Mach. Learn , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 49
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky, "Learning multiple layers of features from tiny images, " Tech. Rep., 2009
    • (2009) Tech. Rep
    • Krizhevsky, A.1
  • 50
    • 74049158146 scopus 로고    scopus 로고
    • NUS-WIDE: A real-world web image database from National University of Singapore
    • T.-S. Chua et al., "NUS-WIDE: A real-world web image database from National University of Singapore, " in Proc. ACM Int. Conf. Image Video Retrieval (CIVR), 2009, pp. 48:1-48:9
    • (2009) Proc ACM Int. Conf. Image Video Retrieval (CIVR) , pp. 481-489
    • Chua, T.-S.1
  • 52
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2006, pp. 2169-2178
    • (2006) Proc IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.