-
1
-
-
38949102073
-
Building better batteries
-
Armand M, Tarascon JM. Building better batteries. Nature 2008;451(7179):652-7.
-
(2008)
Nature
, vol.451
, Issue.7179
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
2
-
-
84867079777
-
Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage
-
Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 2012;24(38):5166-80.
-
(2012)
Adv Mater
, vol.24
, Issue.38
, pp. 5166-5180
-
-
Jiang, J.1
Li, Y.Y.2
Liu, J.P.3
Huang, X.T.4
Yuan, C.Z.5
Lou, X.W.6
-
3
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for li ion batteries
-
Reddy MV, Rao GVS, Chowdari BVR. Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 2013;113(7):5364-457.
-
(2013)
Chem Rev
, vol.113
, Issue.7
, pp. 5364-5457
-
-
Reddy, M.V.1
Rao, G.V.S.2
Chowdari, B.V.R.3
-
4
-
-
84877713661
-
High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology
-
Fan Y, Zhang Q, Xiao QZ, Wang XH, Huang K. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon 2013;59:264-9.
-
(2013)
Carbon
, vol.59
, pp. 264-269
-
-
Fan, Y.1
Zhang, Q.2
Xiao, Q.Z.3
Wang, X.H.4
Huang, K.5
-
5
-
-
77249086655
-
Advanced materials for energy storage
-
Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater 2010;22(8):E28-62.
-
(2010)
Adv Mater
, vol.22
, Issue.8
, pp. E28-62
-
-
Liu, C.1
Li, F.2
Ma, L.P.3
Cheng, H.M.4
-
6
-
-
84868141486
-
Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage
-
Li Y, Guo BK, Ji LW, Lin Z, Xu GJ, Liang Y, et al. Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon 2013;51:185-94.
-
(2013)
Carbon
, vol.51
, pp. 185-194
-
-
Li, Y.1
Guo, B.K.2
Ji, L.W.3
Lin, Z.4
Xu, G.J.5
Liang, Y.6
-
7
-
-
37349040131
-
Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries
-
Sharma Y, Sharma N, Rao GVS, Chowdari BVR. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 2008;53(5):2380-5.
-
(2008)
Electrochim Acta
, vol.53
, Issue.5
, pp. 2380-2385
-
-
Sharma, Y.1
Sharma, N.2
Rao, G.V.S.3
Chowdari, B.V.R.4
-
8
-
-
84872852184
-
A comparative study of nanoparticles and nanospheres ZnFe2O4 as anode material for lithium ion batteries
-
Xu HY, Chen XL, Chen L, Li LE, Xu LQ, Yang J, et al. A comparative study of nanoparticles and nanospheres ZnFe2O4 as anode material for lithium ion batteries. Int J Electrochem Sci 2012;7(9):7976-83.
-
(2012)
Int J Electrochem Sci
, vol.7
, Issue.9
, pp. 7976-7983
-
-
Xu, H.Y.1
Chen, X.L.2
Chen, L.3
Li, L.E.4
Xu, L.Q.5
Yang, J.6
-
9
-
-
77955711372
-
Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries
-
Guo XW, Lu X, Fang XP, Mao Y, Wang ZX, Chen LQ, et al. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun 2010;12(6):847-50.
-
(2010)
Electrochem Commun
, vol.12
, Issue.6
, pp. 847-850
-
-
Guo, X.W.1
Lu, X.2
Fang, X.P.3
Mao, Y.4
Wang, Z.X.5
Chen, L.Q.6
-
10
-
-
81855190904
-
Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries
-
Teh PF, Sharma Y, Pramana SS, Srinivasan M. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 2011;21(38):14999-5008.
-
(2011)
J Mater Chem
, vol.21
, Issue.38
, pp. 14999-15008
-
-
Teh, P.F.1
Sharma, Y.2
Pramana, S.S.3
Srinivasan, M.4
-
11
-
-
84862570832
-
Facile synthesis of MWCNT-ZnFe2O4 nanocomposites as anode materials for lithium ion batteries
-
Sui JH, Zhang C, Hong D, Li J, Cheng Q, Li ZG, et al. Facile synthesis of MWCNT-ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. J Mater Chem 2012;22(27):13674-81.
-
(2012)
J Mater Chem
, vol.22
, Issue.27
, pp. 13674-13681
-
-
Sui, J.H.1
Zhang, C.2
Hong, D.3
Li, J.4
Cheng, Q.5
Li, Z.G.6
-
12
-
-
84878819900
-
Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes
-
Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, et al. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv Energy Mater 2013;3(4):513-23.
-
(2013)
Adv Energy Mater
, vol.3
, Issue.4
, pp. 513-523
-
-
Bresser, D.1
Paillard, E.2
Kloepsch, R.3
Krueger, S.4
Fiedler, M.5
Schmitz, R.6
-
13
-
-
84875165541
-
Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles
-
Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. J Power Sources 2013;236:87-94.
-
(2013)
J Power Sources
, vol.236
, pp. 87-94
-
-
Mueller, F.1
Bresser, D.2
Paillard, E.3
Winter, M.4
Passerini, S.5
-
14
-
-
84869427499
-
Graphene-based electrodes
-
Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H. Graphene-based electrodes. Adv Mater 2012;24(45):5979-6004.
-
(2012)
Adv Mater
, vol.24
, Issue.45
, pp. 5979-6004
-
-
Huang, X.1
Zeng, Z.Y.2
Fan, Z.X.3
Liu, J.Q.4
Zhang, H.5
-
15
-
-
84878073802
-
Graphenebased electrodes for electrochemical energy storage
-
Xu CH, Xu BH, Gu Y, Xiong ZG, Sun J, Zhao XS. Graphenebased electrodes for electrochemical energy storage. Energy Environ Sci 2013;6(5):1388-414.
-
(2013)
Energy Environ Sci
, vol.6
, Issue.5
, pp. 1388-1414
-
-
Xu, C.H.1
Xu, B.H.2
Gu, Y.3
Xiong, Z.G.4
Sun, J.5
Zhao, X.S.6
-
16
-
-
84889074147
-
Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells
-
Mahmood N, Zhang CZ, Yin H, Hou YL. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A 2014;2(1):15-32.
-
(2014)
J Mater Chem A
, vol.2
, Issue.1
, pp. 15-32
-
-
Mahmood, N.1
Zhang, C.Z.2
Yin, H.3
Hou, Y.L.4
-
17
-
-
84867543554
-
Self-assembly of a ZnFe2O4/graphene hybrid and its application as a highperformance anode material for Li-ion batteries
-
Song WT, Xie J, Liu SY, Cao GS, Zhu TJ, Zhao XB. Self-assembly of a ZnFe2O4/graphene hybrid and its application as a highperformance anode material for Li-ion batteries. New J Chem 2012;36(11):2236-41.
-
(2012)
New J Chem
, vol.36
, Issue.11
, pp. 2236-2241
-
-
Song, W.T.1
Xie, J.2
Liu, S.Y.3
Cao, G.S.4
Zhu, T.J.5
Zhao, X.B.6
-
18
-
-
84872741239
-
Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries
-
Xia H, Qian YY, Fu YS, Wang X. Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci 2013;17:67-71.
-
(2013)
Solid State Sci
, vol.17
, pp. 67-71
-
-
Xia, H.1
Qian, Y.Y.2
Fu, Y.S.3
Wang, X.4
-
19
-
-
84861745777
-
Porous ZnFe2O4 nanospheres grown on graphene nanosheets as a superior anode material for lithium ion batteries
-
Chen XL, Cheng B, Xu HY, Yang J, Qian YT. Porous ZnFe2O4 nanospheres grown on graphene nanosheets as a superior anode material for lithium ion batteries. Chem Lett 2012;41(6):639-41.
-
(2012)
Chem Lett
, vol.41
, Issue.6
, pp. 639-641
-
-
Chen, X.L.1
Cheng, B.2
Xu, H.Y.3
Yang, J.4
Qian, Y.T.5
-
20
-
-
79958777386
-
Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation
-
Fu YS, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind Eng Chem Res 2011;50(12):7210-8.
-
(2011)
Ind Eng Chem Res
, vol.50
, Issue.12
, pp. 7210-7218
-
-
Fu, Y.S.1
Wang, X.2
-
21
-
-
84884273609
-
Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes
-
Lu DB, Zhang Y, Lin SX, Wang LT, Wang CM. Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J Alloy Compd 2013;579:336-42.
-
(2013)
J Alloy Compd
, vol.579
, pp. 336-342
-
-
Lu, D.B.1
Zhang, Y.2
Lin, S.X.3
Wang, L.T.4
Wang, C.M.5
-
22
-
-
84880313164
-
One-pot solvothermal synthesized enhanced magnetic zinc ferrite-reduced graphene oxide composite material as adsorbent for methylene blue removal
-
Fei P, Zhong M, Lei ZQ, Su BT. One-pot solvothermal synthesized enhanced magnetic zinc ferrite-reduced graphene oxide composite material as adsorbent for methylene blue removal. Mater Lett 2013;108:72-4.
-
(2013)
Mater Lett
, vol.108
, pp. 72-74
-
-
Fei, P.1
Zhong, M.2
Lei, Z.Q.3
Su, B.T.4
-
23
-
-
84867325588
-
Porous electrode materials for lithium-ion batteries-How to prepare them and what makes them special
-
Vu A, Qian YQ, Stein A. Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv Energy Mater 2012;2(9):1056-85.
-
(2012)
Adv Energy Mater
, vol.2
, Issue.9
, pp. 1056-1085
-
-
Vu, A.1
Qian, Y.Q.2
Stein, A.3
-
24
-
-
84869057708
-
Hierarchically structured porous materials for energy conversion and storage
-
Li Y, Fu ZY, Su BL. Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 2012;22(22):4634-67.
-
(2012)
Adv Funct Mater
, vol.22
, Issue.22
, pp. 4634-4667
-
-
Li, Y.1
Fu, Z.Y.2
Su, B.L.3
-
25
-
-
51749114665
-
Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property
-
Wang M, Ai ZH, Zhang LZ. Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J Phys Chem C 2008;112(34):13163-70.
-
(2008)
J Phys Chem C
, vol.112
, Issue.34
, pp. 13163-13170
-
-
Wang, M.1
Zh, A.2
Zhang, L.Z.3
-
26
-
-
3543092173
-
Photocatalytic activity of highly porous zinc ferrite prepared from a zinc-iron(III)-sulfate layered double hydroxide precursor
-
Meng WQ, Li F, Evans DG, Duan X. Photocatalytic activity of highly porous zinc ferrite prepared from a zinc-iron(III)-sulfate layered double hydroxide precursor. J Porous Mater 2004;11(2):97-105.
-
(2004)
J Porous Mater
, vol.11
, Issue.2
, pp. 97-105
-
-
Meng, W.Q.1
Li, F.2
Evans, D.G.3
Duan, X.4
-
27
-
-
79251597041
-
Synthesis and lithium electrode application of ZnO-ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles
-
Woo MA, Kim TW, Kim IY, Hwang SJ. Synthesis and lithium electrode application of ZnO-ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles. Solid State Ionics 2011;182(1):91-7.
-
(2011)
Solid State Ionics
, vol.182
, Issue.1
, pp. 91-97
-
-
Woo, M.A.1
Kim, T.W.2
Kim, I.Y.3
Hwang, S.J.4
-
28
-
-
33947461960
-
Preparation of graphitic oxide
-
Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80(6):1339.
-
(1958)
J Am Chem Soc
, vol.80
, Issue.6
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
29
-
-
77950361830
-
A scalable solution-phase processing route to graphene oxide and graphene ultralarge sheets
-
Zhou XF, Liu ZP. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem Commun 2010;46(15):2611-3.
-
(2010)
Chem Commun
, vol.46
, Issue.15
, pp. 2611-2613
-
-
Zhou, X.F.1
Liu, Z.P.2
-
30
-
-
84871581822
-
Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries
-
Xin X, Zhou XF, Wu JH, Yao XY, Liu ZP. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 2012;6(12):11035-43.
-
(2012)
ACS Nano
, vol.6
, Issue.12
, pp. 11035-11043
-
-
Xin, X.1
Zhou, X.F.2
Wu, J.H.3
Yao, X.Y.4
Liu, Z.P.5
-
31
-
-
77955875714
-
Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
-
Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010;4(6):3187-94.
-
(2010)
ACS Nano
, vol.4
, Issue.6
, pp. 3187-3194
-
-
Wu, Z.S.1
Ren, W.C.2
Wen, L.3
Gao, L.B.4
Zhao, J.P.5
Chen, Z.P.6
-
32
-
-
33750497467
-
Nanomaterials for lithium ion batteries
-
Jiang CH, Hosono E, Zhou HS. Nanomaterials for lithium ion batteries. Nano Today 2006;1(4):28-33.
-
(2006)
Nano Today
, vol.1
, Issue.4
, pp. 28-33
-
-
Jiang, C.H.1
Hosono, E.2
Zhou, H.S.3
-
33
-
-
61649099375
-
Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure
-
Paek SM, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 2009;9(1):72-5.
-
(2009)
Nano Lett
, vol.9
, Issue.1
, pp. 72-75
-
-
Paek, S.M.1
Yoo, E.2
Honma, I.3
-
34
-
-
84859422701
-
Porous hematite (alpha-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries
-
Yao XY, Tang CL, Yuan GX, Cui P, Xu XX, Liu ZP. Porous hematite (alpha-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochem Commun 2011;13(12):1439-42.
-
(2011)
Electrochem Commun
, vol.13
, Issue.12
, pp. 1439-1442
-
-
Yao, X.Y.1
Tang, C.L.2
Yuan, G.X.3
Cui, P.4
Xu, X.X.5
Liu, Z.P.6
-
35
-
-
70549104829
-
Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries
-
He Y, Huang L, Cai JS, Zheng XM, Sun SG. Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim Acta 2010;55(3):1140-4.
-
(2010)
Electrochim Acta
, vol.55
, Issue.3
, pp. 1140-1144
-
-
He, Y.1
Huang, L.2
Cai, J.S.3
Zheng, X.M.4
Sun, S.G.5
-
36
-
-
80053236875
-
High capacity ZnFe2O4 anode material for lithium ion batteries
-
Ding Y, Yang YF, Shao HX. High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim Acta 2011;56(25):9433-8.
-
(2011)
Electrochim Acta
, vol.56
, Issue.25
, pp. 9433-9438
-
-
Ding, Y.1
Yang, Y.F.2
Shao, H.X.3
-
37
-
-
33646577838
-
Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
-
Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006;312(5775):885-8.
-
(2006)
Science
, vol.312
, Issue.5775
, pp. 885-888
-
-
Nam, K.T.1
Kim, D.W.2
Yoo, P.J.3
Chiang, C.Y.4
Meethong, N.5
Hammond, P.T.6
-
38
-
-
38849087974
-
Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes
-
Lou XW, Deng D, Lee JY, Feng J, Archer LA. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 2008;20(2):258-62.
-
(2008)
Adv Mater
, vol.20
, Issue.2
, pp. 258-262
-
-
Lou, X.W.1
Deng, D.2
Lee, J.Y.3
Feng, J.4
Archer, L.A.5
-
39
-
-
79958076648
-
High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries
-
Lu L, Wang JZ, Zhu XB, Gao XW, Liu HK. High capacity and high rate capability of nanostructured CuFeO2 anode materials for lithium-ion batteries. J Power Sources 2011;196(16):7025-9.
-
(2011)
J Power Sources
, vol.196
, Issue.16
, pp. 7025-7029
-
-
Lu, L.1
Wang, J.Z.2
Zhu, X.B.3
Gao, X.W.4
Liu, H.K.5
-
40
-
-
62249143548
-
Battery materials for ultrafast charging and discharging
-
Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature 2009;458(7235):190-3.
-
(2009)
Nature
, vol.458
, Issue.7235
, pp. 190-193
-
-
Kang, B.1
Ceder, G.2
|