-
1
-
-
33646252239
-
Human iron deficiency
-
Grosbois, B., Decaux, O., Cador, B., Cazalets, C., and Jego, P., Human iron deficiency. Bull. Acad. Natl Méd. 189:1649-1663, 2005.
-
(2005)
Bull. Acad. Natl Méd.
, vol.189
, pp. 1649-1663
-
-
Grosbois, B.1
Decaux, O.2
Cador, B.3
Cazalets, C.4
Jego, P.5
-
2
-
-
0035150473
-
IV, Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship
-
discussion 688S-90S
-
Haas, J. D., and Brownlie, T., IV, Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J. Nutr. 131(2 suppl):676S-88S, 2001. discussion 688S-90S.
-
(2001)
J. Nutr.
, vol.131
, Issue.2 SUPPL.
-
-
Haas, J.D.1
Brownlie, T.2
-
3
-
-
0034995398
-
Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States
-
DOI 10.1542/peds.107.6.1381
-
Halterman, J. S., Kaczorowski, J. M., Aligne, C. A., Auinger, P., and Szilagyi, P. G., Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107:1381-6, 2001. (Pubitemid 32525220)
-
(2001)
Pediatrics
, vol.107
, Issue.6
, pp. 1381-1386
-
-
Halterman, J.S.1
Kaczorowski, J.M.2
Aligne, C.A.3
Auinger, P.4
Szilagyi, P.G.5
-
4
-
-
0024442345
-
Iron deficiency: Definition and diagnosis
-
Cook, J. D., and Skikne, B. S., Iron deficiency: definition and diagnosis. J. Intern. Med. 226(5):349-55, 1989. (Pubitemid 19269639)
-
(1989)
Journal of Internal Medicine
, vol.226
, Issue.5
, pp. 349-355
-
-
Cook, J.D.1
Skikne, B.S.2
-
5
-
-
0030997579
-
The laboratory assessment of iron status: An update
-
Worwood, M., The laboratory assessment of iron status: an update. Clin. Chim. Acta 259:3-23, 1997.
-
(1997)
Clin. Chim. Acta
, vol.259
, pp. 3-23
-
-
Worwood, M.1
-
6
-
-
0028885032
-
Introduction to neural networks
-
Cross, S. S., Harrison, R. F., and Kennedy, R. L., Introduction to neural networks. Lancet 346:1075-1079, 1995.
-
(1995)
Lancet
, vol.346
, pp. 1075-1079
-
-
Cross, S.S.1
Harrison, R.F.2
Kennedy, R.L.3
-
7
-
-
34548461523
-
Modeling force-velocity relation in skeletal muscle isotonic contraction using an artificial neural network
-
DOI 10.1016/j.biosystems.2006.12.004, PII S0303264706002905
-
Dariani, S., Keshavarz, M., Parviz, M., Raoufy, M. R., and Gharibzadeh, S., Modeling force-velocity relation in skeletal muscle isotonic contraction using an artificial neural network. Biosystems 90(2):529-34, 2007. (Pubitemid 47364812)
-
(2007)
BioSystems
, vol.90
, Issue.2
, pp. 529-534
-
-
Dariani, S.1
Keshavarz, M.2
Parviz, M.3
Raoufy, M.R.4
Gharibzadeh, S.5
-
8
-
-
0028820429
-
Artificial neural networks for decision support in clinical medicine
-
Forsstrom, J. J., and Dalton, K. J., Artificial neural networks for decision support in clinical medicine. Ann. Med. 27:509-17, 1995.
-
(1995)
Ann. Med.
, vol.27
, pp. 509-517
-
-
Forsstrom, J.J.1
Dalton, K.J.2
-
9
-
-
0035137729
-
Introduction to artificial neural networks for physicians: Taking the lid off the black box
-
DOI 10.1002/1097-0045(200101)46:1<39::AID-PROS1006>3.0.CO;2-M
-
Rodvold, D. M., McLeod, D. G., Brandt, J. M., Snow, P. B., and Murphy, G. P., Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate 46:39-44, 2001. (Pubitemid 32157774)
-
(2001)
Prostate
, vol.46
, Issue.1
, pp. 39-44
-
-
Rodvold, D.M.1
McLeod, D.G.2
Brandt, J.M.3
Snow, P.B.4
Murphy, G.P.5
-
10
-
-
0035479038
-
Artificial nonmonotonic neural networks
-
DOI 10.1016/S0004-3702(01)00126-6, PII S0004370201001266
-
Boutsinas, B., and Vrahatis, M., Artificial nonmonotonic neural networks. Artif. Intell. 132:1-38, 2001. (Pubitemid 32888153)
-
(2001)
Artificial Intelligence
, vol.132
, Issue.1
, pp. 1-38
-
-
Boutsinas, B.1
Vrahatis, M.N.2
-
11
-
-
0036127092
-
A review of evidence of health benefit from artificial neural networks in medical intervention
-
PII S0893608001001113
-
Lisboa, P., A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15:11-39, 2002. (Pubitemid 34234792)
-
(2002)
Neural Networks
, vol.15
, Issue.1
, pp. 11-39
-
-
Lisboa, P.J.G.1
-
12
-
-
4544233125
-
Artificial intelligence in medicine
-
DOI 10.1308/147870804290
-
Ramesh, A. N., Kambhampati, C., Monson, J. R., and Drew, P. J., Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86:334-8, 2004. (Pubitemid 39232546)
-
(2004)
Annals of the Royal College of Surgeons of England
, vol.86
, Issue.5
, pp. 334-338
-
-
Ramesh, A.N.1
Kambhampati, C.2
Monson, J.R.T.3
Drew, P.J.4
-
13
-
-
0027944333
-
Artificial neural networks within medical decision support systems
-
Sharpe, P. K., and Caleb, P., Artificial neural networks within medical decision support systems. Scand. J. Clin. Lab. Invest. Suppl. 219:3-11, 1994. (Pubitemid 24380362)
-
(1994)
Scandinavian Journal of Clinical and Laboratory Investigation, Supplement
, vol.54
, Issue.219
, pp. 3-11
-
-
Sharpe, P.K.1
Caleb, P.2
-
14
-
-
0032745223
-
Artificial neural networks in laboratory medicine and medical outcome prediction
-
DOI 10.1515/CCLM.1999.128
-
Tafeit, E., and Reibnegger, G., Artificial neural networks in laboratory medicine and medical outcome prediction. Clin. Chem. Lab. Med. 37:845-53, 1999. (Pubitemid 29535055)
-
(1999)
Clinical Chemistry and Laboratory Medicine
, vol.37
, Issue.9
, pp. 845-853
-
-
Tafeit, E.1
Reibnegger, G.2
-
15
-
-
16544393180
-
Neural networks as robust tools in drug lead discovery and development
-
Winkler, D. A., Neural networks as robust tools in drug lead discovery and development. Mol. Biotechnol. 27:139-68, 2004.
-
(2004)
Mol. Biotechnol.
, vol.27
, pp. 139-168
-
-
Winkler, D.A.1
-
16
-
-
0025689918
-
Artificial neural networks and their use in quantitative pathology
-
Dytch, H. E., and Wied, G. L., Artificial neural networks and their use in quantitative pathology. Anal. Quant. Cytol. Histol. 12:379-93, 1990.
-
(1990)
Anal. Quant. Cytol. Histol.
, vol.12
, pp. 379-393
-
-
Dytch, H.E.1
Wied, G.L.2
-
17
-
-
0030297904
-
Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
-
DOI 10.1016/S0895-4356(96)00002-9, PII S0895435696000029
-
Tu, J. V., Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49:1225-1231, 1996. (Pubitemid 26386228)
-
(1996)
Journal of Clinical Epidemiology
, vol.49
, Issue.11
, pp. 1225-1231
-
-
Tu, J.V.1
-
18
-
-
15244347342
-
Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
-
Eftekhar, B., Mohammad, K., Ardebili, H. E., Ghodsi, M., and Ketabchi, E., Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med. Inform. Decis. Mak. 5:3, 2005.
-
(2005)
BMC Med. Inform. Decis. Mak.
, vol.5
, pp. 3
-
-
Eftekhar, B.1
Mohammad, K.2
Ardebili, H.E.3
Ghodsi, M.4
Ketabchi, E.5
-
19
-
-
79952449677
-
A novel method for diagnosing cirrhosis in patients with chronic hepatitis B: Artificial neural network approach
-
Epub 2009 Jul 21
-
Raoufy, M. R., Vahdani, P., Alavian, S. M., Fekri, S., Eftekhari, P., and Gharibzadeh, S., A novel method for diagnosing cirrhosis in patients with chronic hepatitis B: artificial neural network approach. J. Med. Syst. 35(1):121-6, 2011. Epub 2009 Jul 21.
-
(2011)
J. Med. Syst.
, vol.35
, Issue.1
, pp. 121-126
-
-
Raoufy, M.R.1
Vahdani, P.2
Alavian, S.M.3
Fekri, S.4
Eftekhari, P.5
Gharibzadeh, S.6
-
20
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley, J. A., and McNeil, B. J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29-36, 1982. (Pubitemid 12142173)
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
21
-
-
0023890867
-
Measuring the accuracy of diagnostic systems
-
Swets, J. A., Measuring the accuracy of diagnostic systems. Science 240:1285-1293, 1988.
-
(1988)
Science
, vol.240
, pp. 1285-1293
-
-
Swets, J.A.1
-
22
-
-
0036363091
-
Neural network modeling to predict the hypnotic effect of propofol bolus induction
-
Lin, C. S., Li, Y. C., Mok, M. S., Wu, C. C., Chiu, H. W., and Lin, Y. H., Neural network modeling to predict the hypnotic effect of propofol bolus induction. Proc. AMIA Symp. 450-454, 2002.
-
(2002)
Proc. AMIA Symp.
, pp. 450-454
-
-
Lin, C.S.1
Li, Y.C.2
Mok, M.S.3
Wu, C.C.4
Chiu, H.W.5
Lin, Y.H.6
-
23
-
-
69749126033
-
Models for prediction of mortality from cirrhosis with special reference to artificial neural network: A critical review
-
DOI 10.1007/s12072-007-9026-1
-
Ghoshal, U. C., and Das, A., Models for prediction of mortality from cirrhosis with special reference to artificial neural network: a critical review. Hepatol. Int. 2(1):31-8, 2008. Epub 2007. (Pubitemid 351250401)
-
(2008)
Hepatology International
, vol.2
, Issue.1
, pp. 31-38
-
-
Ghoshal, U.C.1
Das, A.2
-
24
-
-
16544372287
-
Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: An artificial neural network prediction model
-
Chong, C. F., Li, Y. C., Wang, T. L., Chang, H., Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: an artificial neural network prediction model. AMIA Annu. Symp. Proc. 160-164, 2003.
-
(2003)
AMIA Annu. Symp. Proc.
, pp. 160-164
-
-
Chong, C.F.1
Li, Y.C.2
Wang, T.L.3
Chang, H.4
|