-
2
-
-
0000682695
-
-
For the seminal studies that inspired the charge-transfer theory, see: a)
-
For the seminal studies that inspired the charge-transfer theory, see: a) R. M. Keefer, L. J. Andrews, J. Am. Chem. Soc. 1950, 72, 4677
-
(1950)
J. Am. Chem. Soc.
, vol.72
, pp. 4677
-
-
Keefer, R.M.1
Andrews, L.J.2
-
4
-
-
0000464139
-
-
Reviews: a)
-
Reviews: a) R. Foster, J. Phys. Chem. 1980, 84, 2135
-
(1980)
J. Phys. Chem.
, vol.84
, pp. 2135
-
-
Foster, R.1
-
6
-
-
0000199048
-
-
Selected examples: a)
-
Selected examples: a) E. F. Hilinski, J. M. Masnovi, C. Amatore, J. K. Kochi, J. Am. Chem. Soc. 1983, 105, 6167
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 6167
-
-
Hilinski, E.F.1
Masnovi, J.M.2
Amatore, C.3
Kochi, J.K.4
-
7
-
-
0029884141
-
-
b) S. M. Hubig, T. M. Bockman, J. K. Kochi, J. Am. Chem. Soc. 1996, 118, 3842.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 3842
-
-
Hubig, S.M.1
Bockman, T.M.2
Kochi, J.K.3
-
11
-
-
0000583935
-
-
d) T. Miyashi, M. Kamata, T. Mukai, J. Am. Chem. Soc. 1987, 109, 2780
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 2780
-
-
Miyashi, T.1
Kamata, M.2
Mukai, T.3
-
12
-
-
0041641241
-
-
e) S. Sankararaman, W. A. Haney, J. K. Kochi, J. Am. Chem. Soc. 1987, 109, 5235
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 5235
-
-
Sankararaman, S.1
Haney, W.A.2
Kochi, J.K.3
-
13
-
-
33845281739
-
-
f) S. Sankararaman, W. A. Haney, J. K. Kochi, J. Am. Chem. Soc. 1987, 109, 7824
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 7824
-
-
Sankararaman, S.1
Haney, W.A.2
Kochi, J.K.3
-
14
-
-
0011709938
-
-
g) T. Gotoh, A. B. Padias, J. H. K. Hall, J. Am. Chem. Soc. 1991, 113, 1308.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 1308
-
-
Gotoh, T.1
Padias, A.B.2
Hall, J.H.K.3
-
15
-
-
73249142280
-
-
a) G. Berionni, P.-A. Bertelle, J. Marrot, R. Goumont, J. Am. Chem. Soc. 2009, 131, 18224
-
(2009)
J. Am. Chem. Soc.
, vol.131
-
-
Berionni, G.1
Bertelle, P.-A.2
Marrot, J.3
Goumont, R.4
-
16
-
-
0036091524
-
-
b) A. V. Vasilyev, S. V. Lindeman, J. K. Kochi, New J. Chem. 2002, 26, 582
-
(2002)
New J. Chem.
, vol.26
, pp. 582
-
-
Vasilyev, A.V.1
Lindeman, S.V.2
Kochi, J.K.3
-
17
-
-
0034802195
-
-
c) J. H. Kim, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 2001, 123, 4951
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 4951
-
-
Kim, J.H.1
Lindeman, S.V.2
Kochi, J.K.3
-
18
-
-
0035835038
-
-
d) J. H. Kim, S. M. Hubig, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 2001, 123, 87.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 87
-
-
Kim, J.H.1
Hubig, S.M.2
Lindeman, S.V.3
Kochi, J.K.4
-
19
-
-
84883189645
-
-
a) E. Arceo, I. D. Jurberg, A. Álvarez-Fernandez, P. Melchiorre, Nat. Chem. 2013, 5, 750
-
(2013)
Nat. Chem.
, vol.5
, pp. 750
-
-
Arceo, E.1
Jurberg, I.D.2
Álvarez-Fernandez, A.3
Melchiorre, P.4
-
20
-
-
84900332598
-
-
b) E. Arceo, A. Bahamonde, G. Bergonzini, P. Melchiorre, Chem. Sci. 2014, 5, 2438
-
(2014)
Chem. Sci.
, vol.5
, pp. 2438
-
-
Arceo, E.1
Bahamonde, A.2
Bergonzini, G.3
Melchiorre, P.4
-
21
-
-
84899975995
-
-
c) M. Nappi, G. Bergonzini, P Melchiorre, Angew. Chem. Int. Ed. 2014, 53, 4921
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 4921
-
-
Nappi, M.1
Bergonzini, G.2
Melchiorre, P.3
-
22
-
-
84930201612
-
-
Angew. Chem. 2014, 126, 5021
-
(2014)
Angew. Chem.
, vol.126
, pp. 5021
-
-
-
24
-
-
85028155058
-
-
Angew. Chem. 2014, 126, 12260.
-
(2014)
Angew. Chem.
, vol.126
-
-
-
26
-
-
85052410081
-
-
b) A. Szent-Gyçrgyi, I. Senberg, J. McLaughlin, Proc. Natl. Acad. Sci. USA 1961, 58, 1089
-
(1961)
Proc. Natl. Acad. Sci. USA
, vol.58
, pp. 1089
-
-
Szent-Gyçrgyi, A.1
Senberg, I.2
McLaughlin, J.3
-
27
-
-
1842860175
-
-
c) B. Smaller, I. Isenberg, S. L. Baird, Nature 1961, 191, 168
-
(1961)
Nature
, vol.191
, pp. 168
-
-
Smaller, B.1
Isenberg, I.2
Baird, S.L.3
-
30
-
-
33847080847
-
-
To the best of our knowledge, only two examples have been reported where an indole-based EDA complex is responsible for a photochemical process, see: a)
-
To the best of our knowledge, only two examples have been reported where an indole-based EDA complex is responsible for a photochemical process, see: a) M. González-Béjar, S.-E. Stiriba, M. A. Miranda, J. Pérez-Prieto, Org. Lett. 2007, 9, 453
-
(2007)
Org. Lett.
, vol.9
, pp. 453
-
-
González-Béjar, M.1
Stiriba, S.-E.2
Miranda, M.A.3
Pérez-Prieto, J.4
-
31
-
-
0001573561
-
-
b) H. Koshima, K. Ding, Y. Chisaka, T. Matsuura, Y. Ohashi, M. Mukasa, J. Org. Chem. 1996, 61, 2352
-
(1996)
J. Org. Chem.
, vol.61
, pp. 2352
-
-
Koshima, H.1
Ding, K.2
Chisaka, Y.3
Matsuura, T.4
Ohashi, Y.5
Mukasa, M.6
-
32
-
-
0001689685
-
-
For thermally-driven reactions where the intermediacy of indole-based EDA complexes has been proposed, see: c)
-
For thermally-driven reactions where the intermediacy of indole-based EDA complexes has been proposed, see: c) J. Bergman, R. Carlsson, S. Misztal, Acta Chem. Scand. 1976, 30, 853
-
(1976)
Acta Chem. Scand.
, vol.30
, pp. 853
-
-
Bergman, J.1
Carlsson, R.2
Misztal, S.3
-
33
-
-
0008731986
-
-
d) P. Sepulcri, R. Goumont, J.-C. Hallé, E. Buncel, F Terrier, Chem. Commun. 1997, 789.
-
(1997)
Chem. Commun.
, pp. 789
-
-
Sepulcri, P.1
Goumont, R.2
Hallé, J.-C.3
Buncel, E.4
Terrier, F.5
-
35
-
-
80051708625
-
-
For recent examples of metal-catalyzed direct alkylations of indoles, see: a)
-
For recent examples of metal-catalyzed direct alkylations of indoles, see: a) L. Jiao, T Bach, J. Am. Chem. Soc. 2011, 133, 12990
-
(2011)
J. Am. Chem. Soc.
, vol.133
-
-
Jiao, L.1
Bach, T.2
-
36
-
-
16844383145
-
-
b) M. Kimura, M. Futamata, R. Mukai, Y Tamaru, J. Am. Chem. Soc. 2005, 127, 4592
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 4592
-
-
Kimura, M.1
Futamata, M.2
Mukai, R.3
Tamaru, Y.4
-
37
-
-
84902332468
-
-
For a recent photochemical approach, see: c)
-
For a recent photochemical approach, see: c) S. Lerch, L.-N. Unkel, M. Brasholz, Angew. Chem. Int. Ed. 2014, 53, 6558
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 6558
-
-
Lerch, S.1
Unkel, L.-N.2
Brasholz, M.3
-
38
-
-
84961700328
-
-
Angew. Chem. 2014, 126, 6676.
-
(2014)
Angew. Chem.
, vol.126
, pp. 6676
-
-
-
39
-
-
85028144198
-
-
Molecular oxygen can quench the excited EDA triplet state, thereby interrupting the ET process leading to the radical ion pair III (Figure 1b). The radical mechanism was further corroborated by the experiments conducted in the presence of 2, 6-di-tert-butyl-4-methylphenol (0.5 equiv), since product 3a was not detected after prolonged exposure to light
-
Molecular oxygen can quench the excited EDA triplet state, thereby interrupting the ET process leading to the radical ion pair III (Figure 1b). The radical mechanism was further corroborated by the experiments conducted in the presence of 2, 6-di-tert-butyl-4-methylphenol (0.5 equiv), since product 3a was not detected after prolonged exposure to light.
-
-
-
-
43
-
-
4243976387
-
-
For the X-ray characterization of synthetically unproductive, inert indole-based EDA complexes, see: a)
-
For the X-ray characterization of synthetically unproductive, inert indole-based EDA complexes, see: a) A. W. Hanson, Acta Crystallogr. 1964, 17, 559
-
(1964)
Acta Crystallogr.
, vol.17
, pp. 559
-
-
Hanson, A.W.1
-
44
-
-
70350001804
-
-
b) C. Lopez, R. M. Claramunt, E. Pinilla, M. R. Torres, I. Alkortac, J. Elguero, Magn. Reson. Chem. 2009, 47, 917.
-
(2009)
Magn. Reson. Chem.
, vol.47
, pp. 917
-
-
Lopez, C.1
Claramunt, R.M.2
Pinilla, E.3
Torres, M.R.4
Alkortac, I.5
Elguero, J.6
-
45
-
-
85028166878
-
-
CCDC 1025725 (IIa) and 1025726 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
-
CCDC 1025725 (IIa) and 1025726 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data-request/cif.
-
-
-
-
49
-
-
0004274056
-
-
While crystals of II a could be safely stored for four months in the dark at 0°C, irradiation from a 23 W CFL induced a fast yet unproductive degradation, as the alkylation product 3a was not detected. The lack of reactivity in the crystalline state could be a consequence of either the absence of base (the model reaction in MeOH does not proceed at all without 2, 6-lutidine) or an unproductive orientation of the substrates 1a and 2a in the solid state, as dictated by stabilizing packing interactions according to Mulliken's "Overlap and Orientation Principle", see Wiley, New York
-
While crystals of II a could be safely stored for four months in the dark at 0°C, irradiation from a 23 W CFL induced a fast yet unproductive degradation, as the alkylation product 3a was not detected. The lack of reactivity in the crystalline state could be a consequence of either the absence of base (the model reaction in MeOH does not proceed at all without 2, 6-lutidine) or an unproductive orientation of the substrates 1a and 2a in the solid state, as dictated by stabilizing packing interactions according to Mulliken's "Overlap and Orientation Principle", see: R. S. Mulliken, W. B. Pearson in Molecular Complexes, Wiley, New York, 1969.
-
(1969)
Molecular Complexes
-
-
Mulliken, R.S.1
Pearson, W.B.2
-
50
-
-
85028159247
-
-
Although our studies do not definitively rule out a radical chain mechanism, they suggest that any chain propagation process must be short-lived to account for a quantum yield as low as 0.2
-
Although our studies do not definitively rule out a radical chain mechanism, they suggest that any chain propagation process must be short-lived to account for a quantum yield as low as 0.2.
-
-
-
-
51
-
-
79955397100
-
-
For a review on dearomatization strategies, see
-
For a review on dearomatization strategies, see: S. P. Roche, J. A. Porco, Angew. Chem. Int. Ed. 2011, 50, 4068
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 4068
-
-
Roche, S.P.1
Porco, J.A.2
-
52
-
-
84918838213
-
-
Angew. Chem. 2011, 123, 4154.
-
(2011)
Angew. Chem.
, vol.123
, pp. 4154
-
-
-
54
-
-
84876584623
-
-
b) A. Lin, J. Yang, M. Hashim, Org. Lett. 2013, 15, 1950.
-
(2013)
Org. Lett.
, vol.15
, pp. 1950
-
-
Lin, A.1
Yang, J.2
Hashim, M.3
|