메뉴 건너뛰기




Volumn 8, Issue 12, 2017, Pages 1122-1131

The impact of training class proportions on binary cropland classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; DECISION TREES; LEARNING SYSTEMS; REFORESTATION;

EID: 85027573788     PISSN: 2150704X     EISSN: 21507058     Source Type: Journal    
DOI: 10.1080/2150704X.2017.1362124     Document Type: Article
Times cited : (21)

References (27)
  • 1
    • 0025920289 scopus 로고
    • Optimal Ground-Based Sampling for Remote Sensing Investigations: Estimating the Regional Meant
    • Atkinson, P. M. 1991. “Optimal Ground-Based Sampling for Remote Sensing Investigations: Estimating the Regional Meant.” International Journal of Remote Sensing 12 (3): 559–567. doi:10.1080/01431169108929672.
    • (1991) International Journal of Remote Sensing , vol.12 , Issue.3 , pp. 559-567
    • Atkinson, P.M.1
  • 2
    • 84957919523 scopus 로고    scopus 로고
    • Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2
    • Bontemps, S., M. Arias, C. Cara, G. Dedieu, E. Guzzonato, O. Hagolle, J. Inglada, et al. 2015. “Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2.” Remote Sensing 7 (12): 16062–16090. doi:10.3390/rs71215815.
    • (2015) Remote Sensing , vol.7 , Issue.12 , pp. 16062-16090
    • Bontemps, S.1    Arias, M.2    Cara, C.3    Dedieu, G.4    Guzzonato, E.5    Hagolle, O.6    Inglada, J.7
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi: 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0036827545 scopus 로고    scopus 로고
    • The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions
    • Chen, D., and D. Stow. 2002. “The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions.” Photogrammetric Engineering and Remote Sensing 68 (11): 1155–1162.
    • (2002) Photogrammetric Engineering and Remote Sensing , vol.68 , Issue.11 , pp. 1155-1162
    • Chen, D.1    Stow, D.2
  • 6
    • 84947318637 scopus 로고
    • Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
    • Cleveland, W. S., and S. J. Devlin. 1988. “Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting.” Journal of the American Statistical Association 83 (403): 596–610. doi:10.1080/01621459.1988.10478639.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.403 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 7
    • 3042654673 scopus 로고    scopus 로고
    • A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
    • Foody, G. M., and A. Mathur. 2004a. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (6): 1335– 1343. doi:10.1109/TGRS.2004.827257.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 8
    • 4544272407 scopus 로고    scopus 로고
    • Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification
    • Foody, G. M., and A. Mathur. 2004b. “Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification.” Remote Sensing of Environment 93 (1): 107–117. doi:10.1016/j.rse.2004.06.017.
    • (2004) Remote Sensing of Environment , vol.93 , Issue.1 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 9
    • 0031105722 scopus 로고    scopus 로고
    • An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network
    • Foody, G. M., and M. K. Arora. 1997. “An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network.” International Journal of Remote Sensing 18 (4): 799–810. doi:10.1080/014311697218764.
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 10
  • 12
    • 0037138473 scopus 로고    scopus 로고
    • An Assessment of Support Vector Machines for Land Cover Classification
    • Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23 (4): 725–749. doi:10.1080/01431160110040323.
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 13
    • 33845536164 scopus 로고    scopus 로고
    • The Class Imbalance Problem: A Systematic Study
    • Japkowicz, N., and S. Stephen. 2002. “The Class Imbalance Problem: A Systematic Study.” Intelligent Data Analysis 6 (5): 429–449.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 14
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
    • Li, C., J. Wang, L. Wang, L. Hu, and P. Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2): 964–983. doi:10.3390/rs6020964.
    • (2014) Remote Sensing , vol.6 , Issue.2 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 15
    • 77957988489 scopus 로고    scopus 로고
    • Class Prediction for High-Dimensional Class-Imbalanced Data
    • Blagus, R. and Lusa, L. 2010. “Class Prediction for High-Dimensional Class-Imbalanced Data.” BMC Bioinformatics 11 (1): 523. doi:10.1186/1471-2105-11-523.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 17
    • 84945907812 scopus 로고    scopus 로고
    • An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
    • Matton, N., G. S. Canto, F. Waldner, S. Valero, D. Morin, J. Inglada, M. Arias, S. Bontemps, B. Koetz, and P. Defourny. 2015. “An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series.” Remote Sensing 7 (10): 13208–13232. doi:10.3390/rs71013208.
    • (2015) Remote Sensing , vol.7 , Issue.10 , pp. 13208-13232
    • Matton, N.1    Canto, G.S.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6    Arias, M.7    Bontemps, S.8    Koetz, B.9    Defourny, P.10
  • 18
    • 84937918615 scopus 로고    scopus 로고
    • On th e Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
    • Millard, K., and M. Richardson. 2015. “On th e Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping.” Remote Sensing 7 (7): 8489–8515. doi:10.3390/rs70708489.
    • (2015) Remote Sensing , vol.7 , Issue.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 19
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data
    • Pal, M., and P. M. Mather. 2004. “Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data.” Future Generation Computer Systems 20 (7): 1215–1225. doi:10.1016/j. future.2003.11.011.
    • (2004) Future Generation Computer Systems , vol.20 , Issue.7 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 20
    • 84942249246 scopus 로고    scopus 로고
    • Class Imbalance Revisited: A New Experimental Setup to Assess the Performance of Treatment Methods
    • Prati, R. C., G. E. Batista, and D. F. Silva. 2015. “Class Imbalance Revisited: A New Experimental Setup to Assess the Performance of Treatment Methods.” Knowledge and Information Systems 45 (1): 247–270. doi:10.1007/s10115-014-0794-3.
    • (2015) Knowledge and Information Systems , vol.45 , Issue.1 , pp. 247-270
    • Prati, R.C.1    Batista, G.E.2    Silva, D.F.3
  • 21
    • 26944473196 scopus 로고    scopus 로고
    • On the Relationship between Training Sample Size and Data Dimensionality: Monte Carlo Analysis of Broadband Multi-Temporal Classification
    • Van Niel, T. G., T. R. McVicar, and B. Datt. 2005. “On the Relationship between Training Sample Size and Data Dimensionality: Monte Carlo Analysis of Broadband Multi-Temporal Classification.” Remote Sensing of Environment 98 (4): 468–480. doi:10.1016/j.rse.2005.08.011.
    • (2005) Remote Sensing of Environment , vol.98 , Issue.4 , pp. 468-480
    • van Niel, T.G.1    McVicar, T.R.2    Datt, B.3
  • 22
    • 0003450542 scopus 로고    scopus 로고
    • Statistics for Engineering and Information Science New York: Springer-Verlag
    • Vapnik, V. N. 2000. The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science New York: Springer-Verlag.
    • (2000) The Nature of Statistical Learning Theory
    • Vapnik, V.N.1
  • 24
    • 84944743397 scopus 로고    scopus 로고
    • Automated Annual Cropland Mapping Using Knowledge-Based Temporal Features
    • Waldner, F., G. S. Canto, and P. Defourny. 2015. “Automated Annual Cropland Mapping Using Knowledge-Based Temporal Features.” ISPRS Journal of Photogrammetry and Remote Sensing 110: 1–13. doi:10.1016/j.isprsjprs.2015.09.013.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 25
    • 84982913053 scopus 로고    scopus 로고
    • Towards a Set of Agrosystem-Specific Cropland Mapping Methods to Address the Global Cropland Diversity
    • Waldner, F., D. De Abelleyra, S. R. Verón, M. Zhang, B. Wu, D. Plotnikov, S. Bartalev, et al. 2016. “Towards a Set of Agrosystem-Specific Cropland Mapping Methods to Address the Global Cropland Diversity.” International Journal of Remote Sensing 37 (14): 3196–3231. doi:10.1080/01431161.2016.1194545.
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.14 , pp. 3196-3231
    • Waldner, F.1    de Abelleyra, D.2    Verón, S.R.3    Zhang, M.4    Wu, B.5    Plotnikov, D.6    Bartalev, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.