-
1
-
-
0025920289
-
Optimal Ground-Based Sampling for Remote Sensing Investigations: Estimating the Regional Meant
-
Atkinson, P. M. 1991. “Optimal Ground-Based Sampling for Remote Sensing Investigations: Estimating the Regional Meant.” International Journal of Remote Sensing 12 (3): 559–567. doi:10.1080/01431169108929672.
-
(1991)
International Journal of Remote Sensing
, vol.12
, Issue.3
, pp. 559-567
-
-
Atkinson, P.M.1
-
2
-
-
84957919523
-
Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2
-
Bontemps, S., M. Arias, C. Cara, G. Dedieu, E. Guzzonato, O. Hagolle, J. Inglada, et al. 2015. “Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2.” Remote Sensing 7 (12): 16062–16090. doi:10.3390/rs71215815.
-
(2015)
Remote Sensing
, vol.7
, Issue.12
, pp. 16062-16090
-
-
Bontemps, S.1
Arias, M.2
Cara, C.3
Dedieu, G.4
Guzzonato, E.5
Hagolle, O.6
Inglada, J.7
-
3
-
-
0035478854
-
Random Forests
-
Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi: 10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
0346586663
-
SMOTE: Synthetic Minority Over-Sampling Technique
-
Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. Philip Kegelmeyer. 2002. “SMOTE: Synthetic Minority Over-Sampling Technique.” Journal of Artificial Intelligence Research 16: 321–357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Philip Kegelmeyer, W.4
-
5
-
-
0036827545
-
The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions
-
Chen, D., and D. Stow. 2002. “The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions.” Photogrammetric Engineering and Remote Sensing 68 (11): 1155–1162.
-
(2002)
Photogrammetric Engineering and Remote Sensing
, vol.68
, Issue.11
, pp. 1155-1162
-
-
Chen, D.1
Stow, D.2
-
6
-
-
84947318637
-
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
-
Cleveland, W. S., and S. J. Devlin. 1988. “Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting.” Journal of the American Statistical Association 83 (403): 596–610. doi:10.1080/01621459.1988.10478639.
-
(1988)
Journal of the American Statistical Association
, vol.83
, Issue.403
, pp. 596-610
-
-
Cleveland, W.S.1
Devlin, S.J.2
-
7
-
-
3042654673
-
A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
-
Foody, G. M., and A. Mathur. 2004a. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (6): 1335– 1343. doi:10.1109/TGRS.2004.827257.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, Issue.6
, pp. 1335-1343
-
-
Foody, G.M.1
Mathur, A.2
-
8
-
-
4544272407
-
Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification
-
Foody, G. M., and A. Mathur. 2004b. “Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification.” Remote Sensing of Environment 93 (1): 107–117. doi:10.1016/j.rse.2004.06.017.
-
(2004)
Remote Sensing of Environment
, vol.93
, Issue.1
, pp. 107-117
-
-
Foody, G.M.1
Mathur, A.2
-
9
-
-
0031105722
-
An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network
-
Foody, G. M., and M. K. Arora. 1997. “An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network.” International Journal of Remote Sensing 18 (4): 799–810. doi:10.1080/014311697218764.
-
(1997)
International Journal of Remote Sensing
, vol.18
, Issue.4
, pp. 799-810
-
-
Foody, G.M.1
Arora, M.K.2
-
11
-
-
84942540471
-
SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites
-
Hagolle, O., S. Sylvander, M. Huc, M. Claverie, D. Clesse, C. Dechoz, V. Lonjou, and V. Poulain. 2015. “SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites.” Remote Sensing 7 (9): 12242–12264. doi:10.3390/rs70912242.
-
(2015)
Remote Sensing
, vol.7
, Issue.9
, pp. 12242-12264
-
-
Hagolle, O.1
Sylvander, S.2
Huc, M.3
Claverie, M.4
Clesse, D.5
Dechoz, C.6
Lonjou, V.7
Poulain, V.8
-
12
-
-
0037138473
-
An Assessment of Support Vector Machines for Land Cover Classification
-
Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23 (4): 725–749. doi:10.1080/01431160110040323.
-
(2002)
International Journal of Remote Sensing
, vol.23
, Issue.4
, pp. 725-749
-
-
Huang, C.1
Davis, L.S.2
Townshend, J.R.G.3
-
13
-
-
33845536164
-
The Class Imbalance Problem: A Systematic Study
-
Japkowicz, N., and S. Stephen. 2002. “The Class Imbalance Problem: A Systematic Study.” Intelligent Data Analysis 6 (5): 429–449.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
14
-
-
84894607481
-
Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
-
Li, C., J. Wang, L. Wang, L. Hu, and P. Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2): 964–983. doi:10.3390/rs6020964.
-
(2014)
Remote Sensing
, vol.6
, Issue.2
, pp. 964-983
-
-
Li, C.1
Wang, J.2
Wang, L.3
Hu, L.4
Gong, P.5
-
15
-
-
77957988489
-
Class Prediction for High-Dimensional Class-Imbalanced Data
-
Blagus, R. and Lusa, L. 2010. “Class Prediction for High-Dimensional Class-Imbalanced Data.” BMC Bioinformatics 11 (1): 523. doi:10.1186/1471-2105-11-523.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 523
-
-
Blagus, R.1
Lusa, L.2
-
17
-
-
84945907812
-
An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
-
Matton, N., G. S. Canto, F. Waldner, S. Valero, D. Morin, J. Inglada, M. Arias, S. Bontemps, B. Koetz, and P. Defourny. 2015. “An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series.” Remote Sensing 7 (10): 13208–13232. doi:10.3390/rs71013208.
-
(2015)
Remote Sensing
, vol.7
, Issue.10
, pp. 13208-13232
-
-
Matton, N.1
Canto, G.S.2
Waldner, F.3
Valero, S.4
Morin, D.5
Inglada, J.6
Arias, M.7
Bontemps, S.8
Koetz, B.9
Defourny, P.10
-
18
-
-
84937918615
-
On th e Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
-
Millard, K., and M. Richardson. 2015. “On th e Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping.” Remote Sensing 7 (7): 8489–8515. doi:10.3390/rs70708489.
-
(2015)
Remote Sensing
, vol.7
, Issue.7
, pp. 8489-8515
-
-
Millard, K.1
Richardson, M.2
-
19
-
-
4444230479
-
Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data
-
Pal, M., and P. M. Mather. 2004. “Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data.” Future Generation Computer Systems 20 (7): 1215–1225. doi:10.1016/j. future.2003.11.011.
-
(2004)
Future Generation Computer Systems
, vol.20
, Issue.7
, pp. 1215-1225
-
-
Pal, M.1
Mather, P.M.2
-
20
-
-
84942249246
-
Class Imbalance Revisited: A New Experimental Setup to Assess the Performance of Treatment Methods
-
Prati, R. C., G. E. Batista, and D. F. Silva. 2015. “Class Imbalance Revisited: A New Experimental Setup to Assess the Performance of Treatment Methods.” Knowledge and Information Systems 45 (1): 247–270. doi:10.1007/s10115-014-0794-3.
-
(2015)
Knowledge and Information Systems
, vol.45
, Issue.1
, pp. 247-270
-
-
Prati, R.C.1
Batista, G.E.2
Silva, D.F.3
-
21
-
-
26944473196
-
On the Relationship between Training Sample Size and Data Dimensionality: Monte Carlo Analysis of Broadband Multi-Temporal Classification
-
Van Niel, T. G., T. R. McVicar, and B. Datt. 2005. “On the Relationship between Training Sample Size and Data Dimensionality: Monte Carlo Analysis of Broadband Multi-Temporal Classification.” Remote Sensing of Environment 98 (4): 468–480. doi:10.1016/j.rse.2005.08.011.
-
(2005)
Remote Sensing of Environment
, vol.98
, Issue.4
, pp. 468-480
-
-
van Niel, T.G.1
McVicar, T.R.2
Datt, B.3
-
22
-
-
0003450542
-
-
Statistics for Engineering and Information Science New York: Springer-Verlag
-
Vapnik, V. N. 2000. The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science New York: Springer-Verlag.
-
(2000)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
-
25
-
-
84982913053
-
Towards a Set of Agrosystem-Specific Cropland Mapping Methods to Address the Global Cropland Diversity
-
Waldner, F., D. De Abelleyra, S. R. Verón, M. Zhang, B. Wu, D. Plotnikov, S. Bartalev, et al. 2016. “Towards a Set of Agrosystem-Specific Cropland Mapping Methods to Address the Global Cropland Diversity.” International Journal of Remote Sensing 37 (14): 3196–3231. doi:10.1080/01431161.2016.1194545.
-
(2016)
International Journal of Remote Sensing
, vol.37
, Issue.14
, pp. 3196-3231
-
-
Waldner, F.1
de Abelleyra, D.2
Verón, S.R.3
Zhang, M.4
Wu, B.5
Plotnikov, D.6
Bartalev, S.7
-
27
-
-
84999015235
-
Optimizing Selection of Training and Auxiliary Data for Operational Land Cover Classification for the LCMAP Initiative
-
Zhu, Z., A. L. Gallant, C. E. Woodcock, B. Pengra, P. Olofsson, T. R. Loveland, S. Jin, D. Dahal, L. Yang, and R. F. Auch. 2016. “Optimizing Selection of Training and Auxiliary Data for Operational Land Cover Classification for the LCMAP Initiative.” ISPRS Journal of Photogrammetry and Remote Sensing 122: 206–221. doi:10.1016/j.isprsjprs.2016.11.004.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.122
, pp. 206-221
-
-
Zhu, Z.1
Gallant, A.L.2
Woodcock, C.E.3
Pengra, B.4
Olofsson, P.5
Loveland, T.R.6
Jin, S.7
Dahal, D.8
Yang, L.9
Auch, R.F.10
|