메뉴 건너뛰기




Volumn 12, Issue 8, 2017, Pages

National-scale cropland mapping based on spectral-temporal features and outdated land cover information

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFICATION; CONTROLLED STUDY; CROPLAND; FARMING SYSTEM; GEOGRAPHIC MAPPING; LAND USE; SATELLITE IMAGERY; SENSOR; SOUTH AFRICA; SPATIOTEMPORAL ANALYSIS; SUPERVISED MACHINE LEARNING; VEGETATION; CROP; GEOGRAPHIC INFORMATION SYSTEM; GEOGRAPHY; REPRODUCIBILITY; THEORETICAL MODEL;

EID: 85027548450     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0181911     Document Type: Article
Times cited : (55)

References (99)
  • 3
    • 85027567032 scopus 로고    scopus 로고
    • Government Communication Information System van Nie-kerk L editor South Africa Yearbook 2012/13
    • Government Communication and Information System. Agriculture, Forestry and Fisheries. In: van Nie-kerk L, editor. South Africa Yearbook 2012/13; 2013. p. 417–420.
    • (2013) Agriculture, Forestry and Fisheries. , pp. 417-420
  • 4
    • 78650003900 scopus 로고    scopus 로고
    • Should subsistence agriculture be supported as a strategy to address rural food insecurity?
    • Aliber M, Hart TG. Should subsistence agriculture be supported as a strategy to address rural food insecurity? Agrekon. 2009; 48(4):434–458.
    • (2009) Agrekon , vol.48 , Issue.4 , pp. 434-458
    • Aliber, M.1    Hart, T.G.2
  • 5
    • 67149138031 scopus 로고    scopus 로고
    • Agriculture production’s sensitivity to changes in climate in South Africa
    • Blignaut J, Ueckermann L, Aronson J. Agriculture production’s sensitivity to changes in climate in South Africa. South African Journal of Science. 2009; 105(1-2):61–68. https://doi.org/10.1590/S0038-23532009000100022
    • (2009) South African Journal of Science , vol.105 , Issue.1-2 , pp. 61-68
    • Blignaut, J.1    Ueckermann, L.2    Aronson, J.3
  • 6
    • 84933557278 scopus 로고    scopus 로고
    • Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps
    • Waldner F, Fritz S, Di Gregorio A, Defourny P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sensing. 2015; 7(6):7959–7986. https://doi.org/10.3390/rs70607959
    • (2015) Remote Sensing , vol.7 , Issue.6 , pp. 7959-7986
    • Waldner, F.1    Fritz, S.2    Di Gregorio, A.3    Defourny, P.4
  • 7
    • 85010533616 scopus 로고    scopus 로고
    • A method to obtain large quantities of reference data
    • Mannel S, Price M, Hua D. A method to obtain large quantities of reference data. International Journal of Remote Sensing. 2006; 27(3):623–627. https://doi.org/10.1080/01431160500106975
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.3 , pp. 623-627
    • Mannel, S.1    Price, M.2    Hua, D.3
  • 9
    • 84868558014 scopus 로고    scopus 로고
    • A framework for supervised image classification with incomplete training samples
    • Guo Q, Li W, Liu D, Chen J. A framework for supervised image classification with incomplete training samples. Photogrammetric Engineering & Remote Sensing. 2012; 78(6):595–604. https://doi.org/10.14358/PERS.78.6.595
    • (2012) Photogrammetric Engineering & Remote Sensing , vol.78 , Issue.6 , pp. 595-604
    • Guo, Q.1    Li, W.2    Liu, D.3    Chen, J.4
  • 10
    • 84866852930 scopus 로고    scopus 로고
    • A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery
    • PMID 23049886
    • Jiang D, Huang Y, Zhuang D, Zhu Y, Xu X, Ren H. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery. PloS one. 2012; 7(9):e45889. https://doi.org/10.1371/journal.pone.0045889 PMID: 23049886
    • (2012) Plos One , vol.7 , Issue.9 , pp. e45889
    • Jiang, D.1    Huang, Y.2    Zhuang, D.3    Zhu, Y.4    Xu, X.5    Ren, H.6
  • 12
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner F, Canto GS, Defourny P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing. 2015; 110:1–13. https://doi.org/10.1016/j.isprsjprs.2015.09.013
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 13
    • 84876310398 scopus 로고    scopus 로고
    • Consistent classification of image time series with automatic adaptive signature generalization
    • Gray Josh and Song Conghe Consistent classification of image time series with automatic adaptive signature generalization. Remote Sensing of Environemnt. 2013; 134:333–341. https://doi.org/10.1016/j.rse.2013.03.022
    • (2013) Remote Sensing of Environemnt , vol.134 , pp. 333-341
    • Josh, G.1    Conghe, S.2
  • 14
    • 84983753038 scopus 로고    scopus 로고
    • Consistent Classification of Landsat Time Series with an Improved Automatic Adaptive Signature Generalization Algorithm
    • Dannenberg Matthew P and Hakkenberg Christopher R and Song Conghe Consistent Classification of Landsat Time Series with an Improved Automatic Adaptive Signature Generalization Algorithm. Remote Sensing. 2016; 8(8):691. https://doi.org/10.3390/rs8080691
    • (2016) Remote Sensing , vol.8 , Issue.8 , pp. 691
    • Dannenberg Matthew, P.1    Hakkenberg Christopher, R.2    Conghe, S.3
  • 15
    • 84884514639 scopus 로고    scopus 로고
    • Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines
    • Löw F, Michel U, Dech S, Conrad C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS journal of photogrammetry and remote sensing. 2013; 85:102–119. https://doi.org/10.1016/j.isprsjprs.2013.08.007
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.85 , pp. 102-119
    • Löw, F.1    Michel, U.2    Dech, S.3    Conrad, C.4
  • 16
    • 84884264508 scopus 로고    scopus 로고
    • Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
    • Zhong L, Gong P, Biging GS. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment. 2014; 140:1–13. https://doi.org/10.1016/j.rse.2013.08.023
    • (2014) Remote Sensing of Environment , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 17
    • 84945907812 scopus 로고    scopus 로고
    • An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
    • Matton N, Canto GS, Waldner F, Valero S, Morin D, Inglada J, et al. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sensing. 2015; 7(10):13208–13232. https://doi.org/10.3390/rs71013208
    • (2015) Remote Sensing , vol.7 , Issue.10 , pp. 13208-13232
    • Matton, N.1    Canto, G.S.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6
  • 18
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier C, Valero S, Inglada J, Champion N, Dedieu G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment. 2016; 187:156–168. https://doi.org/10.1016/j.rse.2016.10.010
    • (2016) Remote Sensing of Environment , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 19
    • 84982913053 scopus 로고    scopus 로고
    • Towards a set of agrosys-tem-specific cropland mapping methods to address the global cropland diversity
    • Waldner F, De Abelleyra D, Verón SR, Zhang M, Wu B, Plotnikov D, et al. Towards a set of agrosys-tem-specific cropland mapping methods to address the global cropland diversity. International Journal of Remote Sensing. 2016; 37(14):3196–3231. https://doi.org/10.1080/01431161.2016.1194545
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.14 , pp. 3196-3231
    • Waldner, F.1    De Abelleyra, D.2    Verón, S.R.3    Zhang, M.4    Wu, B.5    Plotnikov, D.6
  • 21
    • 84962508988 scopus 로고    scopus 로고
    • Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m
    • Lambert MJ, Waldner F, Defourny P. Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sensing. 2016; 8(3):232. https://doi.org/10.3390/rs8030232
    • (2016) Remote Sensing , vol.8 , Issue.3 , pp. 232
    • Lambert, M.J.1    Waldner, F.2    Defourny, P.3
  • 22
    • 84954445329 scopus 로고    scopus 로고
    • Mapping of arable land in Russia using multi-year time series of MODIS data and the LAGMA classification technique
    • Bartalev SA, Plotnikov DE, Loupian EA. Mapping of arable land in Russia using multi-year time series of MODIS data and the LAGMA classification technique. Remote Sensing Letters. 2016; 7(3):269–278. https://doi.org/10.1080/2150704X.2015.1130874
    • (2016) Remote Sensing Letters , vol.7 , Issue.3 , pp. 269-278
    • Bartalev, S.A.1    Plotnikov, D.E.2    Loupian, E.A.3
  • 23
    • 0035862161 scopus 로고    scopus 로고
    • Maximizing precipitation utilization in dryland agriculture in South Africa—a review
    • Bennie A, Hensley M. Maximizing precipitation utilization in dryland agriculture in South Africa—a review. Journal of Hydrology. 2001; 241(1):124–139. https://doi.org/10.1016/S0022-1694(00)00377-2
    • (2001) Journal of Hydrology , vol.241 , Issue.1 , pp. 124-139
    • Bennie, A.1    Hensley, M.2
  • 24
    • 85024914803 scopus 로고    scopus 로고
    • Department of Agriculture F Fisheries RainbowSA
    • Department of Agriculture F, Fisheries. The national agricultural directory 2011. RainbowSA; 2011. p. 1–673.
    • (2011) The National Agricultural Directory 2011 , pp. 1-673
  • 26
    • 84905052616 scopus 로고    scopus 로고
    • Soybeans production in South Africa
    • Dlamini TS, Tshabalala P, Mutengwa T. Soybeans production in South Africa. OCL. 2014; 21(2):D207. https://doi.org/10.1051/ocl/2013047
    • (2014) OCL , vol.21 , Issue.2 , pp. D207
    • Dlamini, T.S.1    Tshabalala, P.2    Mutengwa, T.3
  • 27
    • 84887724460 scopus 로고    scopus 로고
    • High-resolution global maps of 21st-century forest cover change
    • PMID 24233722
    • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, et al. High-resolution global maps of 21st-century forest cover change. science. 2013; 342(6160):850–853. https://doi.org/10.1126/science.1244693 PMID: 24233722
    • (2013) Science , vol.342 , Issue.6160 , pp. 850-853
    • Hansen, M.C.1    Potapov, P.V.2    Moore, R.3    Hancher, M.4    Turubanova, S.5    Tyukavina, A.6
  • 28
    • 84919632886 scopus 로고    scopus 로고
    • National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation
    • Potapov P, Dempewolf J, Talero Y, Hansen M, Stehman S, Vargas C, et al. National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation. Environmental Research Letters. 2014; 9(12):124012. https://doi.org/10.1088/1748-9326/9/12/124012
    • (2014) Environmental Research Letters , vol.9 , Issue.12 , pp. 124012
    • Potapov, P.1    Dempewolf, J.2    Talero, Y.3    Hansen, M.4    Stehman, S.5    Vargas, C.6
  • 29
    • 84923825364 scopus 로고    scopus 로고
    • Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive
    • Potapov PV, Turubanova S, Tyukavina A, Krylov A, McCarty J, Radeloff V, et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sensing of Environment. 2015; 159:28–43. https://doi.org/10.1016/j.rse.2014.11.027
    • (2015) Remote Sensing of Environment , vol.159 , pp. 28-43
    • Potapov, P.V.1    Turubanova, S.2    Tyukavina, A.3    Krylov, A.4    McCarty, J.5    Radeloff, V.6
  • 30
    • 0033214060 scopus 로고    scopus 로고
    • Operational atmospheric correction of Landsat TM data
    • Ouaidrari H, Vermote EF. Operational atmospheric correction of Landsat TM data. Remote Sensing of Environment. 1999; 70(1):4–15. https://doi.org/10.1016/S0034-4257(99)00054-1
    • (1999) Remote Sensing of Environment , vol.70 , Issue.1 , pp. 4-15
    • Ouaidrari, H.1    Vermote, E.F.2
  • 31
    • 63949083045 scopus 로고    scopus 로고
    • Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
    • Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment. 2009; 113(5):893–903. https://doi.org/10.1016/j.rse.2009.01.007
    • (2009) Remote Sensing of Environment , vol.113 , Issue.5 , pp. 893-903
    • Chander, G.1    Markham, B.L.2    Helder, D.L.3
  • 32
    • 84864397452 scopus 로고    scopus 로고
    • Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data
    • Potapov PV, Turubanova SA, Hansen MC, Adusei B, Broich M, Altstatt A, et al. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sensing of Environment. 2012; 122:106–116. https://doi.org/10.1016/j.rse.2011.08.027
    • (2012) Remote Sensing of Environment , vol.122 , pp. 106-116
    • Potapov, P.V.1    Turubanova, S.A.2    Hansen, M.C.3    Adusei, B.4    Broich, M.5    Altstatt, A.6
  • 33
    • 41349115888 scopus 로고    scopus 로고
    • A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin
    • Hansen MC, Roy DP, Lindquist E, Adusei B, Justice CO, Altstatt A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment. 2008; 112(5):2495–2513. https://doi.org/10.1016/j.rse.2007.11.012
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2495-2513
    • Hansen, M.C.1    Roy, D.P.2    Lindquist, E.3    Adusei, B.4    Justice, C.O.5    Altstatt, A.6
  • 34
    • 84865408801 scopus 로고    scopus 로고
    • Landsat: Building a strong future
    • Loveland TR, Dwyer JL. Landsat: Building a strong future. Remote Sensing of Environment. 2012; 122:22–29. https://doi.org/10.1016/j.rse.2011.09.022
    • (2012) Remote Sensing of Environment , vol.122 , pp. 22-29
    • Loveland, T.R.1    Dwyer, J.L.2
  • 38
    • 84899941474 scopus 로고    scopus 로고
    • Generating global crop distribution maps: From census to grid
    • You L, Wood S, Wood-Sichra U, Wu W. Generating global crop distribution maps: from census to grid. Agricultural Systems. 2014; 127:53–60. https://doi.org/10.1016/j.agsy.2014.01.002
    • (2014) Agricultural Systems , vol.127 , pp. 53-60
    • You, L.1    Wood, S.2    Wood-Sichra, U.3    Wu, W.4
  • 40
    • 84999015235 scopus 로고    scopus 로고
    • Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative
    • Zhu Z, Gallant AL, Woodcock CE, Pengra B, Olofsson P, Loveland TR, et al. Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS Journal of Photogrammetry and Remote Sensing. 2016; 122:206–221. https://doi.org/10.1016/j.isprsjprs.2016.11.004
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.122 , pp. 206-221
    • Zhu, Z.1    Gallant, A.L.2    Woodcock, C.E.3    Pengra, B.4    Olofsson, P.5    Loveland, T.R.6
  • 41
    • 85027573788 scopus 로고    scopus 로고
    • The impact of training class proportions on binary cropland classification
    • Waldner F, Jacques DC, Löw F. The impact of training class proportions on binary cropland classification. Remote Sensing Letters (2017); 8(12):1123–1132. https://doi.org/10.1080/2150704X.2017. 1362124
    • (2017) Remote Sensing Letters , vol.8 , Issue.12 , pp. 1123-1132
    • Waldner, F.1    Jacques, D.C.2    Löw, F.3
  • 42
    • 0032699296 scopus 로고    scopus 로고
    • Dissimilarity-based algorithms for selecting structurally diverse sets of compounds
    • PMID 10582578
    • Willett P. Dissimilarity-based algorithms for selecting structurally diverse sets of compounds. Journal of Computational Biology. 1999; 6(3-4):447–457. https://doi.org/10.1089/106652799318382 PMID: 10582578
    • (1999) Journal of Computational Biology , vol.6 , Issue.3-4 , pp. 447-457
    • Willett, P.1
  • 43
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 47
    • 85013630498 scopus 로고    scopus 로고
    • Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series
    • Pelletier C, Valero S, Inglada J, Champion N, Marais Sicre C, Dedieu G. Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series. Remote Sensing. 2017; 9(2):173. https://doi.org/10.3390/rs9020173
    • (2017) Remote Sensing , vol.9 , Issue.2 , pp. 173
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Marais Sicre, C.5    Dedieu, G.6
  • 48
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 2016; 114:24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 50
    • 0029532172 scopus 로고
    • The integration of geographic data with remotely sensed imagery to improve classification in an urban area
    • Harris PM, Ventura SJ. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogrammetric engineering and remote sensing. 1995; 61(8): 993–998.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , Issue.8 , pp. 993-998
    • Harris, P.M.1    Ventura, S.J.2
  • 51
    • 0031105996 scopus 로고    scopus 로고
    • Remote sensing image analysis using a neural network and knowledge-based processing
    • Murai H, Omatu S. Remote sensing image analysis using a neural network and knowledge-based processing. International Journal of Remote Sensing. 1997; 18(4):811–828. https://doi.org/10.1080/ 014311697218773
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 811-828
    • Murai, H.1    Omatu, S.2
  • 52
    • 1642628927 scopus 로고    scopus 로고
    • Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery
    • Lu D, Weng Q. Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogrammetric Engineering & Remote Sensing. 2004; 70(9):1053–1062. https://doi.org/10.14358/PERS.70.9.1053
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.9 , pp. 1053-1062
    • Lu, D.1    Weng, Q.2
  • 53
    • 0034881595 scopus 로고    scopus 로고
    • Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers
    • Stefanov WL, Ramsey MS, Christensen PR. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment. 2001; 77(2):173–185. https://doi.org/10.1016/S0034-4257(01)00204-8
    • (2001) Remote Sensing of Environment , vol.77 , Issue.2 , pp. 173-185
    • Stefanov, W.L.1    Ramsey, M.S.2    Christensen, P.R.3
  • 54
    • 84887290816 scopus 로고    scopus 로고
    • Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern Turkey
    • Alganci U, Sertel E, Ozdogan M, Ormeci C. Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern turkey. Photogrammetric Engineering & Remote Sensing. 2013; 79(11):1053–1065. https://doi.org/10.14358/PERS.79.11.1053
    • (2013) Photogrammetric Engineering & Remote Sensing , vol.79 , Issue.11 , pp. 1053-1065
    • Alganci, U.1    Sertel, E.2    Ozdogan, M.3    Ormeci, C.4
  • 55
    • 0022927181 scopus 로고
    • The enhancement of computer classifications by logical smoothing
    • Townsend F. The enhancement of computer classifications by logical smoothing. Photogrammetric Engineering and Remote Sensing. 1986; 52(2):213–221.
    • (1986) Photogrammetric Engineering and Remote Sensing , vol.52 , Issue.2 , pp. 213-221
    • Townsend, F.1
  • 56
    • 0026614566 scopus 로고
    • A comparison of procedures for classifying remotely-sensed data using simulated data sets
    • Wilson J. A comparison of procedures for classifying remotely-sensed data using simulated data sets. International Journal of Remote Sensing. 1992; 13(2):365–386. https://doi.org/10.1080/ 01431169208904043
    • (1992) International Journal of Remote Sensing , vol.13 , Issue.2 , pp. 365-386
    • Wilson, J.1
  • 57
  • 58
    • 0020642209 scopus 로고
    • A quantitative method to test for consistency and correctness in photointerpre-tation
    • Congalton R, Mead RA. A quantitative method to test for consistency and correctness in photointerpre-tation. Photogrammetric Engineering & Remote Sensing. 1983; 49(1):69–74.
    • (1983) Photogrammetric Engineering & Remote Sensing , vol.49 , Issue.1 , pp. 69-74
    • Congalton, R.1    Mead, R.A.2
  • 59
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
    • Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies. 2011; 2(1):36–37.
    • (2011) Journal of Machine Learning Technologies , vol.2 , Issue.1 , pp. 36-37
    • Powers, D.M.1
  • 60
    • 17144416175 scopus 로고    scopus 로고
    • Local characterization of thematic classification accuracy through spatially constrained confusion matrices
    • Foody G. Local characterization of thematic classification accuracy through spatially constrained confusion matrices. International Journal of Remote Sensing. 2005; 26(6):1217–1228. https://doi.org/10.1080/01431160512331326521
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.6 , pp. 1217-1228
    • Foody, G.1
  • 61
    • 84952837431 scopus 로고    scopus 로고
    • Operational monitoring of the Desert Locust habitat with Earth Observation: An assessment
    • Waldner F, Babah Ebbe MA, Cressman K, Defourny P. Operational monitoring of the Desert Locust habitat with Earth Observation: An assessment. ISPRS International Journal of Geo-Information. 2015; 4(4):2379–2400. https://doi.org/10.3390/ijgi4042379
    • (2015) ISPRS International Journal of Geo-information , vol.4 , Issue.4 , pp. 2379-2400
    • Waldner, F.1    Babah Ebbe, M.A.2    Cressman, K.3    Defourny, P.4
  • 62
    • 84933509785 scopus 로고    scopus 로고
    • A dynamic vegetation senescence indicator for near-real-time desert locust habitat monitoring with MODIS
    • Renier C, Waldner F, Jacques DC, Babah Ebbe MA, Cressman K, Defourny P. A dynamic vegetation senescence indicator for near-real-time desert locust habitat monitoring with MODIS. Remote Sensing. 2015; 7(6):7545–7570. https://doi.org/10.3390/rs70607545
    • (2015) Remote Sensing , vol.7 , Issue.6 , pp. 7545-7570
    • Renier, C.1    Waldner, F.2    Jacques, D.C.3    Babah Ebbe, M.A.4    Cressman, K.5    Defourny, P.6
  • 63
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH. Multivariate adaptive regression splines. The annals of statistics. 1991;p. 1–67. https://doi.org/10.1214/aos/1176347963
    • (1991) The Annals of Statistics , pp. 1-67
    • Friedman, J.H.1
  • 65
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer. 2005; 27(2):83–85. https://doi.org/10.1007/ BF02985802
    • (2005) The Mathematical Intelligencer , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 66
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics. 1940; 11(1):86–92. https://doi.org/10.1214/aoms/1177731944
    • (1940) The Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 67
    • 84910664178 scopus 로고
    • Distribution-free multiple comparisons
    • International Biometric Society 1441 I St NW Suite 700 Washington DC 20005-2210
    • Nemenyi P. Distribution-free multiple comparisons. In: Biometrics. vol. 18. International Biometric Society, 1441 I St, NW, Suite 700, Washington D.C. 20005-2210; 1962. p. 263.
    • (1962) Biometrics , vol.18 , pp. 263
    • Nemenyi, P.1
  • 68
    • 0036103171 scopus 로고    scopus 로고
    • Impact of sensor’s point spread function on land cover characterization: Assessment and deconvolution
    • Huang C, Townshend JR, Liang S, Kalluri SN, DeFries RS. Impact of sensor’s point spread function on land cover characterization: assessment and deconvolution. Remote Sensing of Environment. 2002; 80(2):203–212. https://doi.org/10.1016/S0034-4257(01)00298-X
    • (2002) Remote Sensing of Environment , vol.80 , Issue.2 , pp. 203-212
    • Huang, C.1    Townshend, J.R.2    Liang, S.3    Kalluri, S.N.4    Defries, R.S.5
  • 69
    • 85027567792 scopus 로고    scopus 로고
    • Combined analysis of Sentinel-2’s spatial and spectral resolutions: Potential for sub-decametric landscape feature detection
    • Radoux J, Chomé G, Jacques DC, Waldner F, Bellemans N, Matton N, et al. Combined analysis of Sentinel-2’s spatial and spectral resolutions: potential for sub-decametric landscape feature detection. submitted to Remote Sensing. 2016;p. 1–27.
    • (2016) Submitted to Remote Sensing , pp. 1-27
    • Radoux, J.1    Chomé, G.2    Jacques, D.C.3    Waldner, F.4    Bellemans, N.5    Matton, N.6
  • 70
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research. 2006; 7(Jan):1–30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 71
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro DC, Franklin SE, Dubé MG. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment. 2012; 118:259–272. https://doi.org/10.1016/j.rse.2011.11.020
    • (2012) Remote Sensing of Environment , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 72
    • 84922238304 scopus 로고    scopus 로고
    • Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape
    • Müller H, Rufin P, Griffiths P, Siqueira AJB, Hostert P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sensing of Environment. 2015; 156:490–499. https://doi.org/10.1016/j.rse.2014.10.014
    • (2015) Remote Sensing of Environment , vol.156 , pp. 490-499
    • Müller, H.1    Rufin, P.2    Griffiths, P.3    Siqueira, A.J.B.4    Hostert, P.5
  • 73
    • 22144451429 scopus 로고    scopus 로고
    • A disappearing biome? Reconsidering land-cover change in the Brazilian savanna
    • Jepson W. A disappearing biome? Reconsidering land-cover change in the Brazilian savanna. The Geographical Journal. 2005; 171(2):99–111. https://doi.org/10.1111/j.1475-4959.2005.00153.x
    • (2005) The Geographical Journal , vol.171 , Issue.2 , pp. 99-111
    • Jepson, W.1
  • 74
    • 42149177785 scopus 로고    scopus 로고
    • Land change in the Brazilian Savanna (Cerrado), 1986–2002: Comparative analysis and implications for land-use policy
    • Brannstrom C, Jepson W, Filippi AM, Redo D, Xu Z, Ganesh S. Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy. Land Use Policy. 2008; 25(4):579–595. https://doi.org/10.1016/j.landusepol.2007.11.008
    • (2008) Land Use Policy , vol.25 , Issue.4 , pp. 579-595
    • Brannstrom, C.1    Jepson, W.2    Filippi, A.M.3    Redo, D.4    Xu, Z.5    Ganesh, S.6
  • 75
    • 85019663916 scopus 로고    scopus 로고
    • Land Cover Classification in Complex and Fragmented Agricultural Landscapes of the Ethiopian Highlands
    • Eggen M, Ozdogan M, Zaitchik BF, Simane B. Land Cover Classification in Complex and Fragmented Agricultural Landscapes of the Ethiopian Highlands. Remote Sensing. 2016; 8(12):1020. https://doi.org/10.3390/rs8121020
    • (2016) Remote Sensing , vol.8 , Issue.12 , pp. 1020
    • Eggen, M.1    Ozdogan, M.2    Zaitchik, B.F.3    Simane, B.4
  • 76
    • 0022265874 scopus 로고
    • LANDSAT MSS crop classification performance as a function of scene characteristics
    • Batista G, Hixson M, Bauer M. LANDSAT MSS crop classification performance as a function of scene characteristics. International Journal of Remote Sensing. 1985; 6(9):1521–1533. https://doi.org/10.1080/01431168508948298
    • (1985) International Journal of Remote Sensing , vol.6 , Issue.9 , pp. 1521-1533
    • Batista, G.1    Hixson, M.2    Bauer, M.3
  • 78
    • 84942518161 scopus 로고    scopus 로고
    • Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery
    • Inglada J, Arias M, Tardy B, Hagolle O, Valero S, Morin D, et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sensing. 2015; 7(9):12356–12379. https://doi.org/10.3390/rs70912356
    • (2015) Remote Sensing , vol.7 , Issue.9 , pp. 12356-12379
    • Inglada, J.1    Arias, M.2    Tardy, B.3    Hagolle, O.4    Valero, S.5    Morin, D.6
  • 79
    • 84950123056 scopus 로고    scopus 로고
    • Mapping cropland in smallholder-dominated savannas: Integrating remote sensing techniques and probabilistic modeling
    • Sweeney S, Ruseva T, Estes L, Evans T. Mapping cropland in smallholder-dominated savannas: integrating remote sensing techniques and probabilistic modeling. Remote Sensing. 2015; 7(11): 15295–15317. https://doi.org/10.3390/rs71115295
    • (2015) Remote Sensing , vol.7 , Issue.11 , pp. 15295-15317
    • Sweeney, S.1    Ruseva, T.2    Estes, L.3    Evans, T.4
  • 80
    • 38049160125 scopus 로고    scopus 로고
    • The impact of climate change on smallholder and subsistence agriculture
    • Morton JF. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the national academy of sciences. 2007; 104(50):19680–19685. https://doi.org/10.1073/pnas. 0701855104
    • (2007) Proceedings of The National Academy of Sciences , vol.104 , Issue.50 , pp. 19680-19685
    • Morton, J.F.1
  • 82
    • 85019381440 scopus 로고    scopus 로고
    • A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM)
    • Lebourgeois V, Dupuy S, Vintrou É, Ameline M, Butler S, Bégué A. A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM). Remote Sensing. 2017; 9(3):259. https://doi.org/10.3390/rs9030259
    • (2017) Remote Sensing , vol.9 , Issue.3 , pp. 259
    • Lebourgeois, V.1    Dupuy, S.2    Vintrou, É.3    Ameline, M.4    Butler, S.5    Bégué, A.6
  • 83
    • 41249090031 scopus 로고    scopus 로고
    • Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
    • Sesnie SE, Gessler PE, Finegan B, Thessler S. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment. 2008; 112(5):2145–2159. https://doi.org/10.1016/j.rse.2007.08.025
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2145-2159
    • Sesnie, S.E.1    Gessler, P.E.2    Finegan, B.3    Thessler, S.4
  • 84
    • 2942754291 scopus 로고    scopus 로고
    • Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary
    • Boschetti L, Flasse SP, Brivio PA. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sensing of Environment. 2004; 91(3):280–292. https://doi.org/10.1016/j.rse.2004.02.015
    • (2004) Remote Sensing of Environment , vol.91 , Issue.3 , pp. 280-292
    • Boschetti, L.1    Flasse, S.P.2    Brivio, P.A.3
  • 86
    • 84950112053 scopus 로고    scopus 로고
    • Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in southeastern Brazil
    • Schultz B, Immitzer M, Formaggio AR, Sanches ID, Luiz AJB, Atzberger C. Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in southeastern Brazil. Remote Sensing. 2015; 7(11):14482–14508. https://doi.org/10.3390/rs71114482
    • (2015) Remote Sensing , vol.7 , Issue.11 , pp. 14482-14508
    • Schultz, B.1    Immitzer, M.2    Formaggio, A.R.3    Sanches, I.D.4    Luiz, A.J.B.5    Atzberger, C.6
  • 87
    • 84937938538 scopus 로고    scopus 로고
    • Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control
    • Schmedtmann J, Campagnolo ML. Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control. Remote Sensing. 2015; 7(7):9325–9346. https://doi.org/10.3390/rs70709325
    • (2015) Remote Sensing , vol.7 , Issue.7 , pp. 9325-9346
    • Schmedtmann, J.1    Campagnolo, M.L.2
  • 88
    • 84867069504 scopus 로고    scopus 로고
    • Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm
    • Loosvelt L, Peters J, Skriver H, De Baets B, Verhoest NE. Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm. IEEE Transactions on Geoscience and Remote Sensing. 2012; 50(10):4185–4200. https://doi.org/10.1109/TGRS.2012. 2189012
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.10 , pp. 4185-4200
    • Loosvelt, L.1    Peters, J.2    Skriver, H.3    De Baets, B.4    Verhoest, N.E.5
  • 89
    • 0041840247 scopus 로고    scopus 로고
    • Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data
    • Guerschman J, Paruelo J, Bella CD, Giallorenzi M, Pacin F. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. International Journal of Remote Sensing. 2003; 24(17):3381–3402. https://doi.org/10.1080/0143116021000021288
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.17 , pp. 3381-3402
    • Guerschman, J.1    Paruelo, J.2    Bella, C.D.3    Giallorenzi, M.4    Pacin, F.5
  • 90
    • 0024897018 scopus 로고
    • Comparative study of crop and soil mapping using multitemporal and multispectral SPOT and Landsat Thematic Mapper data
    • Büttner G, Csillag F. Comparative study of crop and soil mapping using multitemporal and multispectral SPOT and Landsat Thematic Mapper data. Remote Sensing of Environment. 1989; 29(3):241–249. https://doi.org/10.1016/0034-4257(89)90003-5
    • (1989) Remote Sensing of Environment , vol.29 , Issue.3 , pp. 241-249
    • Büttner, G.1    Csillag, F.2
  • 91
    • 79551684301 scopus 로고    scopus 로고
    • Evaluating high resolution SPOT 5 satellite imagery for crop identification
    • Yang C, Everitt JH, Murden D. Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture. 2011; 75(2):347–354. https://doi.org/10.1016/j.compag.2010.12.012
    • (2011) Computers and Electronics in Agriculture , vol.75 , Issue.2 , pp. 347-354
    • Yang, C.1    Everitt, J.H.2    Murden, D.3
  • 92
    • 0028982901 scopus 로고
    • Oilseed crop discrimination: Selection of optimum bands and role of middle infrared
    • Sharma S, Bhatt H, et al. Oilseed crop discrimination: selection of optimum bands and role of middle infrared. ISPRS journal of photogrammetry and remote sensing. 1995; 50(5):25–30. https://doi.org/10.1016/0924-2716(95)90118-X
    • (1995) ISPRS Journal of Photogrammetry and Remote Sensing , vol.50 , Issue.5 , pp. 25-30
    • Sharma, S.1    Bhatt, H.2
  • 93
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán JM, Ngugi MK, Plant RE, Six J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment. 2011; 115(6): 1301–1316. https://doi.org/10.1016/j.rse.2011.01.009
    • (2011) Remote Sensing of Environment , vol.115 , Issue.6 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 94
    • 0019213778 scopus 로고
    • Remote sensing of leaf water content in the near infrared
    • Tucker CJ. Remote sensing of leaf water content in the near infrared. Remote sensing of Environment. 1980; 10(1):23–32. https://doi.org/10.1016/0034-4257(80)90096-6
    • (1980) Remote Sensing of Environment , vol.10 , Issue.1 , pp. 23-32
    • Tucker, C.J.1
  • 95
    • 84858015958 scopus 로고    scopus 로고
    • Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data
    • Schuster C, Förster M, Kleinschmit B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. International Journal of Remote Sensing. 2012; 33(17):5583–5599. https://doi.org/10.1080/01431161.2012.666812
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.17 , pp. 5583-5599
    • Schuster, C.1    Förster, M.2    Kleinschmit, B.3
  • 97
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Huang X, Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE transactions on Geoscience and remote sensing. 2013; 51(1):257–272. https://doi.org/10.1109/TGRS.2012.2202912
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 98
    • 84945281405 scopus 로고    scopus 로고
    • Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China
    • PMID 26360597
    • Hao P, Wang L, Niu Z. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China. PloS one. 2015; 10(9):e0137748. https://doi.org/10.1371/journal.pone.0137748 PMID: 26360597
    • (2015) Plos One , vol.10 , Issue.9 , pp. e0137748
    • Hao, P.1    Wang, L.2    Niu, Z.3
  • 99
    • 84942546109 scopus 로고    scopus 로고
    • Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data
    • Löw F, Conrad C, Michel U. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS Journal of Photogrammetry and Remote Sensing. 2015; 108:191–204. https://doi.org/10.1016/j.isprsjprs.2015.07.001
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.108 , pp. 191-204
    • Löw, F.1    Conrad, C.2    Michel, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.