-
1
-
-
84873405642
-
Sodium-ion batteries
-
Slater MD, Kim D et al (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958
-
(2013)
Adv Funct Mater
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
-
2
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries
-
Kim S-W, Seo D-H et al (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721
-
(2012)
Adv Energy Mater
, vol.2
, pp. 710-721
-
-
Kim, S.-W.1
Seo, D.-H.2
-
3
-
-
0018335248
-
Structural classification and properties of the layered oxides
-
Delmas C, Fouassier C et al (1980) Structural classification and properties of the layered oxides. Physica B+C 99:81–85
-
(1980)
Physica B+C
, vol.99
, pp. 81-85
-
-
Delmas, C.1
Fouassier, C.2
-
4
-
-
79960489312
-
Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life
-
Cao YL, Xiao LF et al (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160
-
(2011)
Adv Mater
, vol.23
, pp. 3155-3160
-
-
Cao, Y.L.1
Xiao, L.F.2
-
6
-
-
76449111593
-
18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device
-
18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12:463–466
-
(2010)
Electrochem Commun
, vol.12
, pp. 463-466
-
-
Whitacre, J.F.1
Tevar, A.2
-
7
-
-
45749093342
-
2 structure: Effect of titanium substitution on physical and electrochemical properties
-
2 structure: effect of titanium substitution on physical and electrochemical properties. Chem Mater 20:3404–3411
-
(2008)
Chem Mater
, vol.20
, pp. 3404-3411
-
-
Saint, J.A.1
Doeff, M.M.2
-
10
-
-
79958832735
-
2 as a cathode for solid state sodium battery
-
2 as a cathode for solid state sodium battery. Solid State Ionics 192:360–363
-
(2011)
Solid State Ionics
, vol.192
, pp. 360-363
-
-
Bhide, A.1
Hariharan, K.2
-
12
-
-
0036227372
-
2 and its electrochemical behaviour as cathode in sodium cells
-
2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12:1142–1147
-
(2002)
J Mater Chem
, vol.12
, pp. 1142-1147
-
-
Caballero, A.1
Hernan, L.2
-
13
-
-
0024068450
-
Sodium insertion in vanadium oxides
-
West K, Zachau-Christiansen B et al (1988) Sodium insertion in vanadium oxides. Solid State Ionics 28–30(Part 2):1128–1131
-
(1988)
Solid State Ionics
, vol.28-30
, pp. 1128-1131
-
-
West, K.1
Zachau-Christiansen, B.2
-
16
-
-
84856182093
-
Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries
-
Tepavcevic S, Xiong H et al (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6:530–538
-
(2012)
ACS Nano
, vol.6
, pp. 530-538
-
-
Tepavcevic, S.1
Xiong, H.2
-
17
-
-
79960985104
-
2 as possible electrode for Na-ion batteries
-
2 as possible electrode for Na-ion batteries. Electrochem Commun 13:938–941
-
(2011)
Electrochem Commun
, vol.13
, pp. 938-941
-
-
Hamani, D.1
Ati, M.2
-
18
-
-
42449146534
-
2: Superparamagnetism in x = 1 and trimerization in x approximate to 0.7
-
2: superparamagnetism in x = 1 and trimerization in x approximate to 0.7. J Phys-Condens Matter 20:145205
-
(2008)
J Phys-Condens Matter
, vol.20
-
-
Onoda, M.1
-
20
-
-
80052544349
-
2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery
-
2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40:9306–9312
-
(2011)
Dalton Trans
, vol.40
, pp. 9306-9312
-
-
Carlier, D.1
Cheng, J.H.2
-
23
-
-
80052086268
-
Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes
-
Kim D, Kang SH et al (2011) Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 1:333–336
-
(2011)
Adv Energy Mater
, vol.1
, pp. 333-336
-
-
Kim, D.1
Kang, S.H.2
-
24
-
-
84862696324
-
2 made from earth-abundant elements for rechargeable Na batteries
-
2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517
-
(2012)
Nat Mater
, vol.11
, pp. 512-517
-
-
Yabuuchi, N.1
Kajiyama, M.2
-
25
-
-
0031124233
-
Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
-
Padhi AK, Nanjundaswamy KS et al (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194
-
(1997)
J Electrochem Soc
, vol.144
, pp. 1188-1194
-
-
Padhi, A.K.1
Nanjundaswamy, K.S.2
-
26
-
-
65949120715
-
4 as an advanced cathode material for rechargeable lithium batteries
-
4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552
-
(2009)
J Electrochem Soc
, vol.156
, pp. A541-A552
-
-
Martha, S.K.1
Markovsky, B.2
-
27
-
-
84875505665
-
3 as a sodium rechargeable battery cathode: A combined experimental and theoretical study
-
3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159:A1393–A1397
-
(2012)
J Electrochem Soc
, vol.159
, pp. A1393-A1397
-
-
Lim, S.Y.1
Kim, H.2
-
29
-
-
84874685118
-
7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study
-
7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–1155
-
(2013)
Adv Funct Mater
, vol.23
, pp. 1147-1155
-
-
Kim, H.1
Shakoor, R.A.2
-
30
-
-
34848875178
-
A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
-
Ellis BL, Makahnouk WRM et al (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753
-
(2007)
Nat Mater
, vol.6
, pp. 749-753
-
-
Ellis, B.L.1
Makahnouk, W.R.M.2
-
31
-
-
84873565437
-
A superior low-cost cathode for a Na-ion battery
-
Wang L, Lu Y et al (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52:1964–1967
-
(2013)
Angew Chem Int Ed
, vol.52
, pp. 1964-1967
-
-
Wang, L.1
Lu, Y.2
-
32
-
-
84870443815
-
3/C cathode prepared by pyro-synthesis for sodium-ion batteries
-
3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J Mater Chem 22:20857–20860
-
(2012)
J Mater Chem
, vol.22
, pp. 20857-20860
-
-
Kang, J.1
Baek, S.2
-
33
-
-
83055179318
-
3 as novel electrode material for sodium ion batteries
-
3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89
-
(2012)
Electrochem Commun
, vol.14
, pp. 86-89
-
-
Jian, Z.1
Zhao, L.2
-
34
-
-
84876544264
-
3 cathode for room-temperature sodium-ion batteries
-
3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156– 160
-
(2013)
Adv Energy Mater
, vol.3
, pp. 156-160
-
-
Jian, Z.1
Han, W.2
-
39
-
-
0000323302
-
3+): Synthesis, Thermal, Structural, and Magnetic Studies
-
3+): Synthesis, Thermal, Structural, and Magnetic Studies. J Solid State Chem 148:260–277
-
(1999)
J Solid State Chem
, vol.148
, pp. 260-277
-
-
Le Meins, J.M.1
Crosnier-Lopez, M.P.2
-
40
-
-
80052501422
-
Characterization of Na-based phosphate as electrode materials for electrochemical cells
-
Zaghib K, Trottier J et al (2011) Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 196:9612–9617
-
(2011)
J Power Sources
, vol.196
, pp. 9612-9617
-
-
Zaghib, K.1
Trottier, J.2
-
41
-
-
80051759616
-
Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries
-
Lee KT, Ramesh TN et al (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600
-
(2011)
Chem Mater
, vol.23
, pp. 3593-3600
-
-
Lee, K.T.1
Ramesh, T.N.2
-
43
-
-
84863459889
-
New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: Combined first principles calculations and experimental study
-
Kim H, Park I et al (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372
-
(2012)
J am Chem Soc
, vol.134
, pp. 10369-10372
-
-
Kim, H.1
Park, I.2
-
44
-
-
70350716237
-
Ionothermal synthesis of sodium-based fluorophosphate cathode materials
-
Recham N, Chotard JN et al (2009) Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 156:A993–A999
-
(2009)
J Electrochem Soc
, vol.156
, pp. A993-A999
-
-
Recham, N.1
Chotard, J.N.2
-
45
-
-
76249130880
-
4F Fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni)
-
4F Fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070
-
(2010)
Chem Mater
, vol.22
, pp. 1059-1070
-
-
Ellis, B.L.1
Makahnouk, W.R.M.2
-
47
-
-
84857763523
-
Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage
-
Wessells CD, McDowell MT et al (2012) Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6:1688–1694
-
(2012)
ACS Nano
, vol.6
, pp. 1688-1694
-
-
Wessells, C.D.1
McDowell, M.T.2
-
48
-
-
84862571293
-
6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries
-
6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv Energy Mater 2:410–414
-
(2012)
Adv Energy Mater
, vol.2
, pp. 410-414
-
-
Qian, J.1
Zhou, M.2
-
49
-
-
0001373946
-
The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes
-
Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14:111–115
-
(1976)
Carbon
, vol.14
, pp. 111-115
-
-
Besenhard, J.O.1
-
50
-
-
0024068597
-
Electrochemical intercalation of sodium in graphite
-
Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30(Part 2):1172–1175
-
(1988)
Solid State Ionics
, vol.28-30
, pp. 1172-1175
-
-
Ge, P.1
Fouletier, M.2
-
51
-
-
0027710224
-
Electrochemical insertion of sodium into carbon
-
Doeff MM, Ma YP et al (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140:L169–L170
-
(1993)
J Electrochem Soc
, vol.140
, pp. L169-L170
-
-
Doeff, M.M.1
Ma, Y.P.2
-
52
-
-
0034290825
-
Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties
-
Thomas P, Billaud D (2000) Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties. Electrochim Acta 46:39–47
-
(2000)
Electrochim Acta
, vol.46
, pp. 39-47
-
-
Thomas, P.1
Billaud, D.2
-
53
-
-
0034753822
-
Carbon black: A promising electrode material for sodium-ion batteries
-
Alcantara R, Jimenez-Mateos JM et al (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642
-
(2001)
Electrochem Commun
, vol.3
, pp. 639-642
-
-
Alcantara, R.1
Jimenez-Mateos, J.M.2
-
55
-
-
0035420970
-
Sodium electrochemical insertion mechanisms in various carbon fibres
-
Thomas P, Billaud D (2001) Sodium electrochemical insertion mechanisms in various carbon fibres. Electrochim Acta 46:3359–3366
-
(2001)
Electrochim Acta
, vol.46
, pp. 3359-3366
-
-
Thomas, P.1
Billaud, D.2
-
56
-
-
0033751756
-
High capacity anode materials for rechargeable sodium-ion batteries
-
Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273
-
(2000)
J Electrochem Soc
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
57
-
-
18144413985
-
Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries
-
Alcantara R, Lavela P et al (2005) Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett 8:A222–A225
-
(2005)
Electrochem Solid-State Lett
, vol.8
, pp. A222-A225
-
-
Alcantara, R.1
Lavela, P.2
-
58
-
-
84863832016
-
Sodium ion insertion in hollow carbon nanowires for battery applications
-
Cao Y, Xiao L et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787
-
(2012)
Nano Lett
, vol.12
, pp. 3783-3787
-
-
Cao, Y.1
Xiao, L.2
-
59
-
-
80054830129
-
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
-
Komaba S, Murata W et al (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867
-
(2011)
Adv Funct Mater
, vol.21
, pp. 3859-3867
-
-
Komaba, S.1
Murata, W.2
-
60
-
-
0034506394
-
An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell
-
Stevens DA, Dahn JR (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147:4428–4431
-
(2000)
J Electrochem Soc
, vol.147
, pp. 4428-4431
-
-
Stevens, D.A.1
Dahn, J.R.2
-
61
-
-
0009800208
-
The mechanisms of lithium and sodium insertion in carbon materials
-
Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811
-
(2001)
J Electrochem Soc
, vol.148
, pp. A803-A811
-
-
Stevens, D.A.1
Dahn, J.R.2
-
62
-
-
84863230428
-
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
-
Xiao L, Cao Y et al (2012) High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun 48:3321–3323
-
(2012)
Chem Commun
, vol.48
, pp. 3321-3323
-
-
Xiao, L.1
Cao, Y.2
-
63
-
-
79960898109
-
Challenges for Na-ion negative electrodes
-
Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011–A1014
-
(2011)
J Electrochem Soc
, vol.158
, pp. A1011-A1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
64
-
-
0023382691
-
The role of conductive polymers in alkali-metal secondary electrodes
-
Jow TR, Shacklette LW et al (1987) The role of conductive polymers in alkali-metal secondary electrodes. J Electrochem Soc 134:1730–1733
-
(1987)
J Electrochem Soc
, vol.134
, pp. 1730-1733
-
-
Jow, T.R.1
Shacklette, L.W.2
-
65
-
-
84874069759
-
Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries
-
Xu Y, Zhu Y et al (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133
-
(2013)
Adv Energy Mater
, vol.3
, pp. 128-133
-
-
Xu, Y.1
Zhu, Y.2
-
66
-
-
84862685746
-
Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
-
Komaba S, Matsuura Y et al (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68
-
(2012)
Electrochem Commun
, vol.21
, pp. 65-68
-
-
Komaba, S.1
Matsuura, Y.2
-
67
-
-
84862527593
-
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
-
Qian J, Chen Y et al (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072
-
(2012)
Chem Commun
, vol.48
, pp. 7070-7072
-
-
Qian, J.1
Chen, Y.2
-
68
-
-
84869865643
-
SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries
-
Wu L, Pei F et al (2013) SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochim Acta 87:41–45
-
(2013)
Electrochim Acta
, vol.87
, pp. 41-45
-
-
Wu, L.1
Pei, F.2
-
70
-
-
0036061897
-
4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries
-
4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847–2848
-
(2002)
Chem Mater
, vol.14
, pp. 2847-2848
-
-
Alcantara, R.1
Jaraba, M.2
-
71
-
-
85042914377
-
Electrochemical properties of spinel-type oxide anodes in sodium-ion battery
-
Kuroda Y, Kobayashi E et al (2010) Electrochemical properties of spinel-type oxide anodes in sodium-ion battery. In: 218th ECS meeting abstract #389
-
(2010)
218Th ECS Meeting Abstract #389
-
-
Kuroda, Y.1
Kobayashi, E.2
-
72
-
-
65049087925
-
Cathode properties of metal trifluorides in Li and Na secondary batteries
-
Nishijima M, Gocheva ID et al (2009) Cathode properties of metal trifluorides in Li and Na secondary batteries. J Power Sources 190:558–562
-
(2009)
J Power Sources
, vol.190
, pp. 558-562
-
-
Nishijima, M.1
Gocheva, I.D.2
-
73
-
-
36148953860
-
Electrochemical properties of sodium/pyrite battery at room temperature
-
Kim TB, Choi JW et al (2007) Electrochemical properties of sodium/pyrite battery at room temperature. J Power Sources 174:1275–1278
-
(2007)
J Power Sources
, vol.174
, pp. 1275-1278
-
-
Kim, T.B.1
Choi, J.W.2
-
74
-
-
80054887056
-
2 nanotube anode for rechargeable sodium ion batteries
-
2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem C 2:2560–2565
-
(2011)
J Phys Chem C
, vol.2
, pp. 2560-2565
-
-
Xiong, H.1
Slater, M.D.2
-
75
-
-
80053002284
-
7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries
-
7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111
-
(2011)
Chem Mater
, vol.23
, pp. 4109-4111
-
-
Senguttuvan, P.1
Rousse, G.2
-
76
-
-
84871786222
-
7 rods as an anode material for sodium-ion batteries
-
7 rods as an anode material for sodium-ion batteries. RSC Adv 3:1041–1044
-
(2013)
RSC Adv
, vol.3
, pp. 1041-1044
-
-
Wang, W.1
Yu, C.J.2
|