메뉴 건너뛰기




Volumn 24, Issue 4, 2017, Pages 841-844

MetaMap Lite: An evaluation of a new Java implementation of MetaMap

Author keywords

Algorithms; Natural language processing; Software design; Software validation; Unified medical language system

Indexed keywords

CLINICAL TRIAL; EXTRACTION; HUMAN; NATURAL LANGUAGE PROCESSING; RECALL; SOFTWARE DESIGN; SOFTWARE VALIDATION; UNIFIED MEDICAL LANGUAGE SYSTEM; VELOCITY; WORD PROCESSING; ALGORITHM; COMPARATIVE STUDY; EVALUATION STUDY; INFORMATION RETRIEVAL; PROCEDURES; SOFTWARE;

EID: 85026417983     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw177     Document Type: Article
Times cited : (142)

References (22)
  • 2
    • 0001461487 scopus 로고
    • Exploiting a large thesaurus for information retrieval
    • Aronson AR, Rindflesch TC, Browne AC. Exploiting a large thesaurus for information retrieval. Proc RIAO. 1994;94:197-216.
    • (1994) Proc RIAO. , vol.94 , pp. 197-216
    • Aronson, A.R.1    Rindflesch, T.C.2    Browne, A.C.3
  • 3
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229-36.
    • (2010) J Am Med Inform Assoc. , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 5
    • 84954224617 scopus 로고    scopus 로고
    • NOBLE: Flexible concept recognition for large-scale biomedical natural language processing
    • Tseytlin E, Mitchell K, Legowski E, et al. NOBLE: Flexible concept recognition for large-scale biomedical natural language processing. BMC Bioinformatics. 2016;17(1):32.
    • (2016) BMC Bioinformatics. , vol.17 , Issue.1 , pp. 32
    • Tseytlin, E.1    Mitchell, K.2    Legowski, E.3
  • 6
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507-13.
    • (2010) J Am Med Inform Assoc. , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 7
    • 84890064920 scopus 로고    scopus 로고
    • DNorm: disease name normalization with pairwise learning to rank
    • Leaman R, Islamaj Dogan R, Lu Z. DNorm: disease name normalization with pairwise learning to rank. Bioinformatics. 2013;29(22):2909-17.
    • (2013) Bioinformatics. , vol.29 , Issue.22 , pp. 2909-2917
    • Leaman, R.1    Islamaj Dogan, R.2    Lu, Z.3
  • 9
    • 84895437465 scopus 로고    scopus 로고
    • NCBI disease corpus: a resource for disease name recognition and concept normalization.
    • Doğan RI, Leaman R, Lu Z.NCBI disease corpus: a resource for disease name recognition and concept normalization. J Biomed Inform. 2014;47:1-10.
    • (2014) J Biomed Inform. , vol.47 , pp. 1-10
    • Doğan, R.I.1    Leaman, R.2    Lu, Z.3
  • 10
    • 56649109912 scopus 로고    scopus 로고
    • The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes
    • Vincze V, Szarvas G, Farkas R, Móra G, Csirik J. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics. 2008;9 (Suppl 11):S9.
    • (2008) BMC Bioinformatics. , vol.9 , pp. S9
    • Vincze, V.1    Szarvas, G.2    Farkas, R.3    Móra, G.4    Csirik, J.5
  • 11
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2011;18(5):552-56.
    • (2011) J Am Med Inform Assoc. , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 12
    • 85026382296 scopus 로고    scopus 로고
    • Accessed July 2016.
    • Apache OpenNLP. Online: https://opennlp.apache.org/. Accessed July 2016.
  • 13
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform. 2001;34(5):301-10.
    • (2001) J Biomed Inform. , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 14
    • 80053230002 scopus 로고    scopus 로고
    • The Yale cTAKES extensions for document classification: architecture and application
    • Garla V, Lo Re V, Dorey-Stein Z, et al. The Yale cTAKES extensions for document classification: architecture and application. J Am Med Inform Assoc. 2011;18(5):614-20.
    • (2011) J Am Med Inform Assoc. , vol.18 , Issue.5 , pp. 614-620
    • Garla, V.1    Lo Re, V.2    Dorey-Stein, Z.3
  • 15
    • 84964881739 scopus 로고    scopus 로고
    • CD-REST: a system for extracting chemical-induced disease relation in literature.
    • (Oxford)
    • Xu J, Wu Y, Zhang Y, Wang J, Lee HJ, Xu H.CD-REST: a system for extracting chemical-induced disease relation in literature. Database (Oxford). 2016;2016:baw036.
    • (2016) Database , vol.2016
    • Xu, J.1    Wu, Y.2    Zhang, Y.3    Wang, J.4    Lee, H.J.5    Xu, H.6
  • 16
    • 85026409167 scopus 로고    scopus 로고
    • Towards a generalizable time expression model for temporal reasoning in clinical notes
    • eCollection 2015
    • Velupillai S, Mowery DL, Abdelrahman S, Christensen L, Chapman WW. Towards a generalizable time expression model for temporal reasoning in clinical notes. AMIA Annu Symp Proc. 2015;2015:1252-59. eCollection 2015.
    • (2015) AMIA Annu Symp Proc. , vol.2015 , pp. 1252-1259
    • Velupillai, S.1    Mowery, D.L.2    Abdelrahman, S.3    Christensen, L.4    Chapman, W.W.5
  • 17
    • 84862253166 scopus 로고    scopus 로고
    • MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database
    • Davis AP, Wiegers TC, Rosenstein MC, Mattingly CJ. MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database. Database. 2012;2012:bar065.
    • (2012) Database. , vol.2012
    • Davis, A.P.1    Wiegers, T.C.2    Rosenstein, M.C.3    Mattingly, C.J.4
  • 18
    • 84949496799 scopus 로고    scopus 로고
    • Challenges in clinical natural language processing for automated disorder normalization
    • Leaman R, Khare R, Lu Z. Challenges in clinical natural language processing for automated disorder normalization. J Biomed Inform. 2015;57: 28-37.
    • (2015) J Biomed Inform. , vol.57 , pp. 28-37
    • Leaman, R.1    Khare, R.2    Lu, Z.3
  • 19
    • 70349470770 scopus 로고    scopus 로고
    • ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
    • Harkema H, Dowling JN, Thornblade T, Chapman WW. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J Biomed Inform. 2009;42(5):839-51.
    • (2009) J Biomed Inform. , vol.42 , Issue.5 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3    Chapman, W.W.4
  • 20
    • 85026350229 scopus 로고    scopus 로고
    • Accessed July 2016.
    • Apache Lucene. Online: https://lucene.apache.org/. Accessed July 2016.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.