메뉴 건너뛰기




Volumn 263, Issue , 2017, Pages 693-701

A new electrode design method in piezoelectric vibration energy harvesters to maximize output power

Author keywords

Energy harvesting; Microelectromechanical Systems (MEMS); Piezoelectric transducers

Indexed keywords

ELECTRODES; ELECTROMECHANICAL DEVICES; ENERGY HARVESTING; MEMS; NANOCANTILEVERS; PIEZOELECTRIC MATERIALS; PIEZOELECTRIC TRANSDUCERS; PIEZOELECTRICITY;

EID: 85026357054     PISSN: 09244247     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sna.2017.06.026     Document Type: Article
Times cited : (40)

References (21)
  • 3
    • 76849102629 scopus 로고    scopus 로고
    • Kinetic energy harvesting using piezoelectric and electromagnetic technologies 2014; state of the art
    • Khaligh, A., Peng, Z., Cong, Z., Kinetic energy harvesting using piezoelectric and electromagnetic technologies 2014; state of the art. IEEE Trans. Ind. Electron. 57:3 (2010), 850–860.
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.3 , pp. 850-860
    • Khaligh, A.1    Peng, Z.2    Cong, Z.3
  • 4
    • 84855645427 scopus 로고    scopus 로고
    • Review of power conditioning for kinetic energy harvesting systems
    • Szarka, G.D., Stark, B.H., Burrow, S.G., Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27:2 (2012), 803–815.
    • (2012) IEEE Trans. Power Electron. , vol.27 , Issue.2 , pp. 803-815
    • Szarka, G.D.1    Stark, B.H.2    Burrow, S.G.3
  • 5
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96:9 (2008), 1457–1486.
    • (2008) Proc. IEEE , vol.96 , Issue.9 , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, A.S.4    Green, T.C.5
  • 6
    • 84889674209 scopus 로고    scopus 로고
    • Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film
    • Tang, G., Yang, B., Liu, J.-q., Xu, B., Zhu, H.-y., Yang, C.-s., Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sens. Actuators A: Phys. 205 (2014), 150–155.
    • (2014) Sens. Actuators A: Phys. , vol.205 , pp. 150-155
    • Tang, G.1    Yang, B.2    Liu, J.-Q.3    Xu, B.4    Zhu, H.-Y.5    Yang, C.-S.6
  • 7
    • 84949179991 scopus 로고    scopus 로고
    • Advances in Energy Harvesting Methods
    • Springer Science & Business Media
    • Elvin, N., Erturk, A., Advances in Energy Harvesting Methods. 2013, Springer Science & Business Media.
    • (2013)
    • Elvin, N.1    Erturk, A.2
  • 8
    • 84981719719 scopus 로고    scopus 로고
    • An efficient SSHI interface with increased input range for piezoelectric energy harvesting under variable conditions
    • Du, S., Jia, Y., Do, C.D., Seshia, A.A., An efficient SSHI interface with increased input range for piezoelectric energy harvesting under variable conditions. IEEE J. Solid-State Circuits 51:11 (2016), 2729–2742.
    • (2016) IEEE J. Solid-State Circuits , vol.51 , Issue.11 , pp. 2729-2742
    • Du, S.1    Jia, Y.2    Do, C.D.3    Seshia, A.A.4
  • 9
    • 84894054921 scopus 로고    scopus 로고
    • Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications
    • Han, M., Yuan, Q., Sun, X., Zhang, H., Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. J. Microelectromech. Syst. 23:1 (2014), 204–212.
    • (2014) J. Microelectromech. Syst. , vol.23 , Issue.1 , pp. 204-212
    • Han, M.1    Yuan, Q.2    Sun, X.3    Zhang, H.4
  • 10
    • 76849088652 scopus 로고    scopus 로고
    • Improving power density of a cantilever piezoelectric power harvester through a curved l-shaped proof mass
    • Li, W.G., He, S., Yu, S., Improving power density of a cantilever piezoelectric power harvester through a curved l-shaped proof mass. IEEE Trans. Ind. Electron. 57:3 (2010), 868–876.
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.3 , pp. 868-876
    • Li, W.G.1    He, S.2    Yu, S.3
  • 11
    • 3042787287 scopus 로고    scopus 로고
    • Energy Scavenging for Wireless Sensor Nodes With a Focus on Vibration to Electricity Conversion (Thesis)
    • Roundy, S.J., Energy Scavenging for Wireless Sensor Nodes With a Focus on Vibration to Electricity Conversion (Thesis). 2003.
    • (2003)
    • Roundy, S.J.1
  • 12
    • 84857291859 scopus 로고    scopus 로고
    • Charge redistribution in piezoelectric energy harvesters
    • Stewart, M., Weaver, P.M., Cain, M., Charge redistribution in piezoelectric energy harvesters. Appl. Phys. Lett., 100(7), 2012, 073901.
    • (2012) Appl. Phys. Lett. , vol.100 , Issue.7 , pp. 073901
    • Stewart, M.1    Weaver, P.M.2    Cain, M.3
  • 13
    • 84859701375 scopus 로고    scopus 로고
    • Thin-film piezoelectric materials for a better energy harvesting MEMS
    • Wasa, K., Matsushima, T., Adachi, H., Kanno, I., Kotera, H., Thin-film piezoelectric materials for a better energy harvesting MEMS. J. Microelectromech. Syst. 21:2 (2012), 451–457.
    • (2012) J. Microelectromech. Syst. , vol.21 , Issue.2 , pp. 451-457
    • Wasa, K.1    Matsushima, T.2    Adachi, H.3    Kanno, I.4    Kotera, H.5
  • 14
    • 84960192259 scopus 로고    scopus 로고
    • Maximizing output power in a cantilevered piezoelectric vibration energy harvester by electrode design
    • Du, S., Jia, Y., Seshia, A., Maximizing output power in a cantilevered piezoelectric vibration energy harvester by electrode design. J. Phys.: Conf. Ser., 660(1), 2015, 012114.
    • (2015) J. Phys.: Conf. Ser. , vol.660 , Issue.1 , pp. 012114
    • Du, S.1    Jia, Y.2    Seshia, A.3
  • 15
    • 80053573320 scopus 로고    scopus 로고
    • Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
    • Liu, H., Tay, C.J., Quan, C., Kobayashi, T., Lee, C., Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Microelectromech. Syst. 20:5 (2011), 1131–1142.
    • (2011) J. Microelectromech. Syst. , vol.20 , Issue.5 , pp. 1131-1142
    • Liu, H.1    Tay, C.J.2    Quan, C.3    Kobayashi, T.4    Lee, C.5
  • 17
    • 84872732801 scopus 로고    scopus 로고
    • A novel two-degrees-of-freedom piezoelectric energy harvester
    • Wu, H., Tang, L., Yang, Y., Soh, C.K., A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct., 2012, 10.1177/1045389X12457254.
    • (2012) J. Intell. Mater. Syst. Struct.
    • Wu, H.1    Tang, L.2    Yang, Y.3    Soh, C.K.4
  • 18
    • 84944686508 scopus 로고    scopus 로고
    • Modal optimization of doubly clamped base-excited multilayer broadband vibration energy harvesters
    • Xiong, X., Oyadiji, S.O., Modal optimization of doubly clamped base-excited multilayer broadband vibration energy harvesters. J. Intell. Mater. Syst. Struct., 2014, 10.1177/1045389X14551433.
    • (2014) J. Intell. Mater. Syst. Struct.
    • Xiong, X.1    Oyadiji, S.O.2
  • 20
    • 84928472871 scopus 로고    scopus 로고
    • Nonlinear m-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances
    • Leadenham, S., Erturk, A., Nonlinear m-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater. Struct., 24(5), 2015, 055021.
    • (2015) Smart Mater. Struct. , vol.24 , Issue.5 , pp. 055021
    • Leadenham, S.1    Erturk, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.